相互递归的证明

时间:2017-09-25 19:16:55

标签: agda lambda-calculus

我有一个标准的无类型lambda演算定义和一些操作,我试图显示一个与替换相关性相关的属性。不幸的是,我必须展示很多代码才能说清楚。

open import Data.Nat renaming (ℕ to Nat) using (zero ; suc ; _+_)
open import Data.Vec.Properties
open import Data.Vec
  using (Vec ; [] ; _∷_ ; map ; lookup ; allFin ; tabulate ; tail ; head)
open import Data.Fin using (Fin ; zero ; suc)
open import Function using (_∘_ ; _$_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning

data WellScopedTm : Nat → Set where
  var : (n : Nat) → Fin n → WellScopedTm n
  lam : (n : Nat) → WellScopedTm (suc n) → WellScopedTm n
  app : (n : Nat) → WellScopedTm n → WellScopedTm n → WellScopedTm n

↑_ : ∀ n → Vec (Fin (suc n)) n
↑ _ = tabulate suc

rename : ∀ {n m} (t : WellScopedTm n) (is : Vec (Fin m) n) → WellScopedTm m
rename {_} {m} (var _ i)   is = var m (lookup i is)
rename {n} {m} (lam _ t)   is = lam m (rename t (zero ∷ map suc is))
rename {n} {m} (app _ t u) is = app m (rename t is) (rename u is)

-- q
q : (n : Nat) → WellScopedTm (suc n)
q n = var (suc n) zero

-- id
idSub : (n : Nat) → Vec (WellScopedTm n) n
idSub n = tabulate (var n)

-- weakening (derived)
lift : {n : Nat} → WellScopedTm n → WellScopedTm (suc n)
lift t = rename t (↑ _)

-- p
projSub : (n : Nat) → Vec (WellScopedTm (suc n)) n
projSub = map lift ∘ idSub -- or tabulate (lift ∘ (var n))

-- sub
sub : ∀ {n m} → WellScopedTm n → Vec (WellScopedTm m) n → WellScopedTm m
sub (var _ i)   ts = lookup i ts
sub (lam _ t)   ts = lam _ (sub t (var _ zero ∷ map lift ts))
sub (app _ t u) ts = app _ (sub t ts) (sub u ts)

-- composition of homs 
comp : ∀ {m n k} → Vec (WellScopedTm n) k → Vec (WellScopedTm m) n → Vec (WellScopedTm m) k
comp []   _ = []
comp (t ∷ ts) us = sub t us ∷ comp ts us

具体来说,我想表明

compAssoc : ∀ {m n k p} (ts : Vec (WellScopedTm n) k) (us : Vec (WellScopedTm m) n)
    (vs : Vec (WellScopedTm p) m) → comp (comp ts us) vs ≡ comp ts (comp us vs)

compInSub : ∀ {m n k} (t : WellScopedTm n) (ts : Vec (WellScopedTm k) n)
    (us : Vec (WellScopedTm m) k) → sub t (comp ts us) ≡ sub (sub t ts) us

我提出的证据相互依赖,相关性证明就是这个

compAssoc []       us vs = refl
compAssoc (x ∷ ts) us vs = sym $
  trans (cong (λ d → d ∷ comp ts (comp us vs)) (compInSub x us vs))
        (sym (cong (_∷_ (sub (sub x us) vs)) (compAssoc ts us vs)))

然而,在第二个属性的lambda案例中,我必须在两个开放目标中使用关联性,并且终止检查器会抱怨。

compInSub (var _ zero)    (v ∷ ts) us = refl
compInSub (var _ (suc x)) (v ∷ ts) us = compInSub (var _ x) ts us
compInSub (app n t u) ts us =
  trans (cong (λ z → app _ z (sub u (comp ts us))) (compInSub t ts us))
        (cong (app _ (sub (sub t ts) us)) (compInSub u ts us))
compInSub (lam n t) ts us = sym $
  begin
    lam _ (sub (sub t (q _ ∷ map lift ts)) (q _ ∷ map lift us))
  ≡⟨ cong (lam _) (sym $ compInSub t (q _ ∷ map lift ts) (q _ ∷ map lift us)) ⟩
    lam _ (sub t $ q _ ∷ comp (map lift ts) (q _ ∷ map lift us))
  ≡⟨ cong (λ x → lam _ (sub t $ q _ ∷ comp x _)) (mlift=xs∘p ts) ⟩
    lam _ (sub t $ q _ ∷ comp (comp ts (projSub _)) (q _ ∷ map lift us))
  ≡⟨ cong (λ x → lam _ (sub t $ q _ ∷ comp _ (q _ ∷ x))) (mlift=xs∘p us) ⟩
    lam _ (sub t $ q _ ∷ comp (comp ts (projSub _)) (q _ ∷ comp us (projSub _)))
  ≡⟨ cong (λ x → lam _ (sub t $ q _ ∷ x )) {!!} ⟩      -- compAssoc ts (projSub _) (q _ ∷ comp us (projSub _))
    lam _ (sub t $ q _ ∷ comp ts (comp (projSub _) (q _ ∷ comp us (projSub _))))
  ≡⟨ cong (λ x → lam _ (sub t $ q _ ∷ comp ts x)) (p∘x∷ts (q _) (comp us (projSub _))) ⟩  -- 
    lam _ (sub t $ q _ ∷ comp ts (comp us (projSub _)))
  ≡⟨ cong (λ x → lam _ (sub t $ q _ ∷ x)) (sym {!!}) ⟩  -- compAssoc ts us (projSub _)
    lam _ (sub t $ q _ ∷ comp (comp ts us) (projSub _))
  ≡⟨ cong (λ x → lam _ (sub t $ q _ ∷ x)) (sym (mlift=xs∘p (comp ts us))) ⟩ 
    lam _ (sub t $ q _ ∷ map lift (comp ts us))
  ∎

终止检查器是否允许禁止我评论的关联性调用?如果没有,任何补救措施?

最后,一些假设使代码类型检查

postulate p∘x∷ts : ∀ {n k : Nat} (t : WellScopedTm n) (ts : Vec (WellScopedTm n) k) → comp (projSub k) (t ∷ ts) ≡ ts
postulate mlift=xs∘p : ∀ {n m : Nat} (xs : Vec (WellScopedTm n) m) → map lift xs ≡ comp xs (projSub n)

0 个答案:

没有答案