Cython内联函数,以numpy数组作为参数

时间:2011-01-09 19:23:03

标签: python performance numpy inline cython

考虑这样的代码:

import numpy as np
cimport numpy as np

cdef inline inc(np.ndarray[np.int32_t] arr, int i):
    arr[i]+= 1

def test1(np.ndarray[np.int32_t] arr):
    cdef int i
    for i in xrange(len(arr)):
        inc(arr, i)

def test2(np.ndarray[np.int32_t] arr):
    cdef int i
    for i in xrange(len(arr)):
        arr[i] += 1

我使用ipython来测量test1和test2的速度:

In [7]: timeit ttt.test1(arr)
100 loops, best of 3: 6.13 ms per loop

In [8]: timeit ttt.test2(arr)
100000 loops, best of 3: 9.79 us per loop

有没有办法优化test1?为什么不把cython内联这个函数告诉?

更新: 实际上我需要的是这样的多维代码:

# cython: infer_types=True
# cython: boundscheck=False
# cython: wraparound=False

import numpy as np
cimport numpy as np

cdef inline inc(np.ndarray[np.int32_t, ndim=2] arr, int i, int j):
    arr[i, j] += 1

def test1(np.ndarray[np.int32_t, ndim=2] arr):
    cdef int i,j    
    for i in xrange(arr.shape[0]):
        for j in xrange(arr.shape[1]):
            inc(arr, i, j)


def test2(np.ndarray[np.int32_t, ndim=2] arr):    
    cdef int i,j    
    for i in xrange(arr.shape[0]):
        for j in xrange(arr.shape[1]):
            arr[i,j] += 1   

时间安排:

In [7]: timeit ttt.test1(arr)
1 loops, best of 3: 647 ms per loop

In [8]: timeit ttt.test2(arr)
100 loops, best of 3: 2.07 ms per loop

显式内联可提供300倍的加速。并且我的实际功能相当大,因此内联使得代码可维护性更差

UPDATE2:

# cython: infer_types=True
# cython: boundscheck=False
# cython: wraparound=False

import numpy as np
cimport numpy as np

cdef inline inc(np.ndarray[np.float32_t, ndim=2] arr, int i, int j):
  arr[i, j]+= 1

def test1(np.ndarray[np.float32_t, ndim=2] arr):
    cdef int i,j    
    for i in xrange(arr.shape[0]):
        for j in xrange(arr.shape[1]):
            inc(arr, i, j)


def test2(np.ndarray[np.float32_t, ndim=2] arr):    
    cdef int i,j    
    for i in xrange(arr.shape[0]):
        for j in xrange(arr.shape[1]):
            arr[i,j] += 1    

cdef class FastPassingFloat2DArray(object):
    cdef float* data
    cdef int stride0, stride1 
    def __init__(self, np.ndarray[np.float32_t, ndim=2] arr):
        self.data = <float*>arr.data
        self.stride0 = arr.strides[0]/arr.dtype.itemsize
        self.stride1 = arr.strides[1]/arr.dtype.itemsize
    def __getitem__(self, tuple tp):
        cdef int i, j
        cdef float *pr, r
        i, j = tp        
        pr = (self.data + self.stride0*i + self.stride1*j)
        r = pr[0]
        return r
    def __setitem__(self, tuple tp, float value):
        cdef int i, j
        cdef float *pr, r
        i, j = tp        
        pr = (self.data + self.stride0*i + self.stride1*j)
        pr[0] = value        


cdef inline inc2(FastPassingFloat2DArray arr, int i, int j):
    arr[i, j]+= 1


def test3(np.ndarray[np.float32_t, ndim=2] arr):    
    cdef int i,j    
    cdef FastPassingFloat2DArray tmparr = FastPassingFloat2DArray(arr)
    for i in xrange(arr.shape[0]):
        for j in xrange(arr.shape[1]):
            inc2(tmparr, i,j)

时间:

In [4]: timeit ttt.test1(arr)
1 loops, best of 3: 623 ms per loop

In [5]: timeit ttt.test2(arr)
100 loops, best of 3: 2.29 ms per loop

In [6]: timeit ttt.test3(arr)
1 loops, best of 3: 201 ms per loop

3 个答案:

答案 0 :(得分:17)

问题发布已超过3年,同时取得了很大进展。在此代码上(问题的更新2):

# cython: infer_types=True
# cython: boundscheck=False
# cython: wraparound=False
import numpy as np
cimport numpy as np

cdef inline inc(np.ndarray[np.int32_t, ndim=2] arr, int i, int j):
    arr[i, j]+= 1

def test1(np.ndarray[np.int32_t, ndim=2] arr):
    cdef int i,j    
    for i in xrange(arr.shape[0]):
        for j in xrange(arr.shape[1]):
            inc(arr, i, j)

def test2(np.ndarray[np.int32_t, ndim=2] arr):    
    cdef int i,j    
    for i in xrange(arr.shape[0]):
        for j in xrange(arr.shape[1]):
            arr[i,j] += 1

我得到以下时间:

arr = np.zeros((1000,1000), dtype=np.int32)
%timeit test1(arr)
%timeit test2(arr)
   1 loops, best of 3: 354 ms per loop
1000 loops, best of 3: 1.02 ms per loop

因此,即使超过3年,问题也是可以重现的。 Cython现在有typed memoryviews,AFAIK是在Cython 0.16中引入的,因此在发布问题时不可用。有了这个:

# cython: infer_types=True
# cython: boundscheck=False
# cython: wraparound=False
import numpy as np
cimport numpy as np

cdef inline inc(int[:, ::1] tmv, int i, int j):
    tmv[i, j]+= 1

def test3(np.ndarray[np.int32_t, ndim=2] arr):
    cdef int i,j
    cdef int[:, ::1] tmv = arr
    for i in xrange(tmv.shape[0]):
        for j in xrange(tmv.shape[1]):
            inc(tmv, i, j)

def test4(np.ndarray[np.int32_t, ndim=2] arr):    
    cdef int i,j
    cdef int[:, ::1] tmv = arr
    for i in xrange(tmv.shape[0]):
        for j in xrange(tmv.shape[1]):
            tmv[i,j] += 1

有了这个我得到:

arr = np.zeros((1000,1000), dtype=np.int32)
%timeit test3(arr)
%timeit test4(arr)
1000 loops, best of 3: 977 µs per loop
1000 loops, best of 3: 838 µs per loop

我们几乎那里已经比老式的方式更快了!现在,inc()函数有资格被声明nogil,所以让我们声明它!但是oops:

Error compiling Cython file:
[...]

cdef inline inc(int[:, ::1] tmv, int i, int j) nogil:
    ^
[...]
Function with Python return type cannot be declared nogil

Aaah,我完全错过了void返回类型丢失了!再一次,但现在void

cdef inline void inc(int[:, ::1] tmv, int i, int j) nogil:
    tmv[i, j]+= 1

最后我得到了:

%timeit test3(arr)
%timeit test4(arr)
1000 loops, best of 3: 843 µs per loop
1000 loops, best of 3: 853 µs per loop

与手动内联一样快!


现在,为了好玩,我在这段代码上尝试了Numba

import numpy as np
from numba import autojit, jit

@autojit
def inc(arr, i, j):
    arr[i, j] += 1

@autojit
def test5(arr):
    for i in xrange(arr.shape[0]):
        for j in xrange(arr.shape[1]):
            inc(arr, i, j)

我明白了:

arr = np.zeros((1000,1000), dtype=np.int32)
%timeit test5(arr)
100 loops, best of 3: 4.03 ms per loop

即使它比Cython慢​​4.7倍,很可能因为JIT编译器无法内联inc(),我认为它是非常棒!我需要做的就是添加@autojit并且不必使用笨拙的类型声明搞乱代码; 88x加速几乎没有任何东西!

我尝试过Numba的其他事情,比如

@jit('void(i4[:],i4,i4)')
def inc(arr, i, j):
    arr[i, j] += 1

nopython=True但未能进一步改进。

Improving inlining is on the Numba developers' list,我们只需要提交更多请求以使其具有更高的优先级。 ;)

答案 1 :(得分:7)

您将数组作为inc()类型的Python对象传递给numpy.ndarray。由于引用计数等问题,传递Python对象很昂贵,而且似乎阻止了内联。如果你以C方式传递数组,即作为指针,test1()变得比我机器上的test2()更快:

cimport numpy as np

cdef inline inc(int* arr, int i):
    arr[i] += 1

def test1(np.ndarray[np.int32_t] arr):
    cdef int i
    for i in xrange(len(arr)):
        inc(<int*>arr.data, i)

答案 2 :(得分:7)

问题在于分配一个numpy数组(或者,等效地,将其作为函数参数传递)不仅仅是一个简单的赋值,而是一个“缓冲区提取”,它填充一个结构并将步幅和指针信息拉入快速索引所需的局部变量。如果你在迭代中等数量的元素,这个O(1)开销很容易在循环中分摊,但对于小函数来说肯定不是这样。

许多人的愿望清单中提高这一点很重要,但这是一个非平凡的变化。例如,参见http://groups.google.com/group/cython-users/browse_thread/thread/8fc8686315d7f3fe

的讨论