我正在尝试解决所说的3 Sum问题:
给定n个整数的数组S,S中是否有元素a,b,c,a + b + c = 0?找到数组中所有唯一的三元组,它们总和为零。
注意:解决方案集不得包含重复的三元组。
以下是我对此问题的解决方案:
def threeSum(nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
nums.sort()
n = len(nums)
solutions = []
for i, num in enumerate(nums):
if i > n - 3:
break
left, right = i+1, n-1
while left < right:
s = num + nums[left] + nums[right] # check if current sum is 0
if s == 0:
new_solution = [num, nums[left], nums[right]]
# add to the solution set only if this triplet is unique
if new_solution not in solutions:
solutions.append(new_solution)
right -= 1
left += 1
elif s > 0:
right -= 1
else:
left += 1
return solutions
此解决方案工作正常,时间复杂度为O(n**2 + k)
,空间复杂度为O(k)
,其中n是输入数组的大小,k是解决方案的数量。
在LeetCode上运行此代码时,我发现大型数组的TimeOut错误。我想知道如何进一步优化我的代码以通过判断。
P.S:我已经阅读了this related question中的讨论。这无助于我解决问题。
答案 0 :(得分:3)
您可以对算法进行一些改进:
1)使用sets代替您的解决方案列表。使用套件将确保您没有任何重复,并且您不必进行if new_solution not in solutions:
检查。
2)为全零列表添加边缘案例检查。没有太多开销,但在某些情况下节省了大量时间。
3)将枚举更改为秒。它快一点。奇怪的是,我在测试中使用while循环获得了更好的性能,然后n_max = n -2; for i in range(0, n_max):
阅读this问题和xrange或范围的答案应该更快。
注意:如果我运行测试5次,我将无法获得相同的时间。我所有的测试都是+ -100毫秒。因此,需要进行一些小的优化。对于所有python程序,它们可能不会更快。对于运行测试的确切硬件/软件配置,它们可能更快。
另外:如果从代码中删除所有注释,那么速度快300毫安的HAHAHAH就好了。只是一个有趣的副作用,然而测试正在运行。
我已经在代码的所有部分中添加了O()表示法,这需要花费很多时间。
def threeSum(nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
# timsort: O(nlogn)
nums.sort()
# Stored val: Really fast
n = len(nums)
# Memory alloc: Fast
solutions = []
# O(n) for enumerate
for i, num in enumerate(nums):
if i > n - 3:
break
left, right = i+1, n-1
# O(1/2k) where k is n-i? Not 100% sure about this one
while left < right:
s = num + nums[left] + nums[right] # check if current sum is 0
if s == 0:
new_solution = [num, nums[left], nums[right]]
# add to the solution set only if this triplet is unique
# O(n) for not in
if new_solution not in solutions:
solutions.append(new_solution)
right -= 1
left += 1
elif s > 0:
right -= 1
else:
left += 1
return solutions
这是一些不会超时且速度很快的代码(ish)。它还暗示了一种使算法更快的方法(使用更多设置;))
class Solution(object):
def threeSum(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
# timsort: O(nlogn)
nums.sort()
# Stored val: Really fast
n = len(nums)
# Hash table
solutions = set()
# O(n): hash tables are really fast :)
unique_set = set(nums)
# covers a lot of edge cases with 2 memory lookups and 1 hash so it's worth the time
if len(unique_set) == 1 and 0 in unique_set and len(nums) > 2:
return [[0, 0, 0]]
# O(n) but a little faster than enumerate.
i = 0
while i < n - 2:
num = nums[i]
left = i + 1
right = n - 1
# O(1/2k) where k is n-i? Not 100% sure about this one
while left < right:
# I think its worth the memory alloc for the vars to not have to hit the list index twice. Not sure
# how much faster it really is. Might save two lookups per cycle.
left_num = nums[left]
right_num = nums[right]
s = num + left_num + right_num # check if current sum is 0
if s == 0:
# add to the solution set only if this triplet is unique
# Hash lookup
solutions.add(tuple([right_num, num, left_num]))
right -= 1
left += 1
elif s > 0:
right -= 1
else:
left += 1
i += 1
return list(solutions)
答案 1 :(得分:0)
我整理了PeterH提供的更快的代码,但是我找到了一个更快的解决方案,而且代码也更简单。
class Solution(object):
def threeSum(self, nums):
res = []
nums.sort()
length = len(nums)
for i in xrange(length-2): #[8]
if nums[i]>0: break #[7]
if i>0 and nums[i]==nums[i-1]: continue #[1]
l, r = i+1, length-1 #[2]
while l<r:
total = nums[i]+nums[l]+nums[r]
if total<0: #[3]
l+=1
elif total>0: #[4]
r-=1
else: #[5]
res.append([nums[i], nums[l], nums[r]])
while l<r and nums[l]==nums[l+1]: #[6]
l+=1
while l<r and nums[r]==nums[r-1]: #[6]
r-=1
l+=1
r-=1
return res
https://leetcode.com/problems/3sum/discuss/232712/Best-Python-Solution-(Explained)