我的理论中有3种布尔类型:
bool
= {True,False} bool3
= {True,False,⊥} bool4
= {True,False,⊥,ε} bool3
基于bool
:
typedef bool3 = "UNIV :: bool option set" ..
definition bool3 :: "bool ⇒ bool3" where
"bool3 b = Abs_bool3 (Some b)"
notation bot ("⊥")
instantiation bool3 :: bot
begin
definition "⊥ ≡ Abs_bool3 None"
instance ..
end
free_constructors case_bool3 for
bool3
| "⊥ :: bool3"
apply (metis Rep_bool3_inverse bot_bool3_def bool3_def not_Some_eq)
apply (smt Abs_bool3_inverse bool3_def iso_tuple_UNIV_I option.inject)
by (simp add: Abs_bool3_inject bot_bool3_def bool3_def)
bool4
基于bool3
:
typedef bool4 = "UNIV :: bool3 option set" ..
definition bool4 :: "bool ⇒ bool4" where
"bool4 b = Abs_bool4 (Some (bool3 b))"
class opt = bot +
fixes void :: "'a" ("ε")
instantiation bool4 :: opt
begin
definition "⊥ = Abs_bool4 (Some ⊥)"
definition "ε = Abs_bool4 None"
instance ..
end
free_constructors case_bool4 for
bool4
| "⊥ :: bool4"
| "ε :: bool4"
apply (metis Rep_bool4_inverse bool3.exhaust bool4_def bot_bool4_def not_Some_eq void_bool4_def)
apply (metis Abs_bool4_inverse UNIV_I bool3.inject bool4_def option.sel)
apply (metis Abs_bool4_inverse UNIV_I bot_bool4_def bool3.distinct(1) bool4_def option.sel)
apply (metis Abs_bool4_inverse UNIV_I bool4_def option.distinct(1) void_bool4_def)
by (metis Abs_bool4_inverse UNIV_I bot_bool4_def option.distinct(1) void_bool4_def)
以下是一些类型转换:
fun bool3_to_bool4 :: "bool3 ⇒ bool4" where
"bool3_to_bool4 ⊥ = ⊥"
| "bool3_to_bool4 (bool3 b) = bool4 b"
declare [[coercion_enabled]]
declare [[coercion "bool3 :: bool ⇒ bool3"]]
declare [[coercion "bool4 :: bool ⇒ bool4"]]
declare [[coercion "bool3_to_bool4 :: bool3 ⇒ bool4"]]
我为bool3
和bool4
定义了逻辑连词:
fun bool3_and :: "bool3 ⇒ bool3 ⇒ bool3" where
"bool3_and (bool3 a) (bool3 b) = bool3 (a ∧ b)"
| "bool3_and (bool3 False) _ = bool3 False"
| "bool3_and _ (bool3 False) = bool3 False"
| "bool3_and ⊥ _ = ⊥"
| "bool3_and _ ⊥ = ⊥"
fun bool4_and :: "bool4 ⇒ bool4 ⇒ bool4" where
"bool4_and (bool4 a) (bool4 b) = bool4 (a ∧ b)"
| "bool4_and (bool4 False) _ = bool4 False"
| "bool4_and _ (bool4 False) = bool4 False"
| "bool4_and ⊥ _ = ⊥"
| "bool4_and _ ⊥ = ⊥"
| "bool4_and ε _ = ε"
| "bool4_and _ ε = ε"
并证明它们是等价的:
lemma bool3_and_eq_bool4_and:
"(bool3_and a b = c) =
(bool4_and a b = c)"
apply (cases a; cases b; cases c; simp)
apply (metis (full_types) bool3.distinct(1) bool3_and.simps(2) bool3_and.simps(6) bool4.distinct(1) bool4_and.simps(2) bool4_and.simps(9))
apply (metis (full_types) bool3.distinct(1) bool3_and.simps(2) bool3_and.simps(6) bool4.distinct(1) bool4_and.simps(2) bool4_and.simps(9))
apply (metis (full_types) bool3.distinct(1) bool3_and.simps(3) bool3_and.simps(4) bool4.distinct(1) bool4_and.simps(4) bool4_and.simps(6))
apply (metis (full_types) bool3.distinct(1) bool3_and.simps(3) bool3_and.simps(4) bool4.distinct(1) bool4_and.simps(4) bool4_and.simps(6))
done
问题是bool3_and
和bool4_and
非常相似。我的理论中有很多这样的功能。而且我不想两次复制相同的逻辑。我也不想证明类似功能的等价性。是否可以通过限制bool3_and
来定义bool4_and
?或者通过[{1}}的扩展名定义bool4_and
?
答案 0 :(得分:0)
答案很简单。我应该按照以下方式定义bool4
构造函数:
definition bool4 :: "bool3 ⇒ bool4" where
"bool4 b = Abs_bool4 (Some b)"
free_constructors case_bool4 for
bool4
| "ε :: bool4"
apply (metis Abs_bool4_cases bool4_def not_None_eq void_bool4_def)
apply (metis Abs_bool4_inverse UNIV_I bool4_def option.inject)
by (simp add: Abs_bool4_inject bool4_def void_bool4_def)
declare [[coercion "bool4 :: bool3 ⇒ bool4"]]
bool3_and
可以通过以下方式简化:
fun bool3_and :: "bool3 ⇒ bool3 ⇒ bool3" where
"bool3_and a b = (a ∧ b)"
| "bool3_and False _ = False"
| "bool3_and _ False = False"
| "bool3_and ⊥ _ = ⊥"
| "bool3_and _ ⊥ = ⊥"
这是bool4_and
扩展bool3_and
的地方:
fun bool4_and :: "bool4 ⇒ bool4 ⇒ bool4" where
"bool4_and a b = bool3_and a b"
| "bool4_and ε _ = ε"
| "bool4_and _ ε = ε"
通过简化可以证明bool3_and
域上bool4_and
和bool3
的等效性:
lemma bool3_and_eq_bool4_and:
"(bool3_and a b = c) =
(bool4_and a b = c)"
by simp