我在网上找到了一个例子,然而,只返回BFS元素的序列还不足以进行计算。让我们说根是BFS树的第一级,然后它的子级是第二级,等等。我怎么知道它们在哪个级别,以及下面代码中每个节点的父级是谁(I将创建一个对象来存储其父级和树级)?
# sample graph implemented as a dictionary
graph = {'A': ['B', 'C', 'E'],
'B': ['A','D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B','D'],
'F': ['C'],
'G': ['C']}
# visits all the nodes of a graph (connected component) using BFS
def bfs_connected_component(graph, start):
# keep track of all visited nodes
explored = []
# keep track of nodes to be checked
queue = [start]
# keep looping until there are nodes still to be checked
while queue:
# pop shallowest node (first node) from queue
node = queue.pop(0)
if node not in explored:
# add node to list of checked nodes
explored.append(node)
neighbours = graph[node]
# add neighbours of node to queue
for neighbour in neighbours:
queue.append(neighbour)
return explored
bfs_connected_component(graph,'A') # returns ['A', 'B', 'C', 'E', 'D', 'F', 'G']
答案 0 :(得分:7)
您可以通过首先将0级分配给起始节点来跟踪每个节点的级别。然后,对于节点X
的每个邻居,分配级别level_of_X + 1
。
此外,您的代码会多次将同一节点推送到队列中。我使用了单独的列表visited
来避免这种情况。
# sample graph implemented as a dictionary
graph = {'A': ['B', 'C', 'E'],
'B': ['A','D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B','D'],
'F': ['C'],
'G': ['C']}
# visits all the nodes of a graph (connected component) using BFS
def bfs_connected_component(graph, start):
# keep track of all visited nodes
explored = []
# keep track of nodes to be checked
queue = [start]
levels = {} # this dict keeps track of levels
levels[start]= 0 # depth of start node is 0
visited= [start] # to avoid inserting the same node twice into the queue
# keep looping until there are nodes still to be checked
while queue:
# pop shallowest node (first node) from queue
node = queue.pop(0)
explored.append(node)
neighbours = graph[node]
# add neighbours of node to queue
for neighbour in neighbours:
if neighbour not in visited:
queue.append(neighbour)
visited.append(neighbour)
levels[neighbour]= levels[node]+1
# print(neighbour, ">>", levels[neighbour])
print(levels)
return explored
ans = bfs_connected_component(graph,'A') # returns ['A', 'B', 'C', 'E', 'D', 'F', 'G']
print(ans)
答案 1 :(得分:2)
是的,此代码仅以广度优先的方式访问节点。对于许多应用程序来说,这本身就是一件很有用的事情(例如,在未加权的图中查找最短路径)
要实际返回BFS树,需要一些额外的工作。您可以考虑为每个节点存储子项列表,或者返回(节点,父节点)对。任何一种表示都应该允许你弄清楚树的结构。
这里要注意的另一件事是,代码使用python列表作为队列,这不是一个好主意。因为从列表中删除第一个元素,需要O(n)时间。