如何从statsmodels.api.OLS获得条件数?

时间:2017-09-23 06:15:33

标签: python linear-regression statsmodels

我正在进行多元线性回归,并尝试选择多个自变量的最佳子集。我想尝试在“for”循环中完成所有1024种可能的组合,并根据条件数和r平方保存最佳结果。我知道它会计算两者,给出如下结果:

model = sm.OLS(salarray, narraycareer)
results = model.fit()
print results.summary()

                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.425
Model:                            OLS   Adj. R-squared:                  0.409
Method:                 Least Squares   F-statistic:                     26.89
Date:                Sat, 23 Sep 2017   Prob (F-statistic):           1.69e-27
Time:                        00:58:14   Log-Likelihood:                -1907.4
No. Observations:                 263   AIC:                             3831.
Df Residuals:                     255   BIC:                             3859.
Df Model:                           7                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
const        535.9259     21.387     25.058      0.000       493.808   578.044
x1          -675.5296    302.245     -2.235      0.026     -1270.744   -80.315
x2           182.7168    436.493      0.419      0.676      -676.874  1042.307
x3           -48.2603    126.141     -0.383      0.702      -296.671   200.151
x4           445.0863    218.373      2.038      0.043        15.043   875.130
x5           344.0092    219.896      1.564      0.119       -89.035   777.053
x6           -41.5168     71.925     -0.577      0.564      -183.159   100.126
x7            96.5430     30.595      3.156      0.002        36.293   156.793
==============================================================================
Omnibus:                       96.442   Durbin-Watson:                   1.973
Prob(Omnibus):                  0.000   Jarque-Bera (JB):              440.598
Skew:                           1.438   Prob(JB):                     2.11e-96
Kurtosis:                       8.651   Cond. No.                         61.7
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
>>> 

但是我找不到任何关于如何输出条件数或r平方的文档。

谢谢!

1 个答案:

答案 0 :(得分:2)

我找到了它,或者Spyder ide在翻译窗口找到了它。

>>> results.rsquared
0.42465891683421031
>>> results.condition_number
61.715714331759621
>>> >

当我输入“结果”时。它提出了一堆建议。什么东西vim不做!