这是我的简单对象:
[numpy.datetime64('2017-01-03T00:00:00.000000000'),
numpy.datetime64('2017-01-04T00:00:00.000000000'),
numpy.datetime64('2017-01-05T00:00:00.000000000'),
numpy.datetime64('2017-01-06T00:00:00.000000000'),
numpy.datetime64('2017-01-09T00:00:00.000000000'),
numpy.datetime64('2017-01-10T00:00:00.000000000'),
numpy.datetime64('2017-01-11T00:00:00.000000000'),
numpy.datetime64('2017-01-12T00:00:00.000000000'),
numpy.datetime64('2017-01-13T00:00:00.000000000'),
numpy.datetime64('2017-01-16T00:00:00.000000000'),
numpy.datetime64('2017-01-17T00:00:00.000000000'),
numpy.datetime64('2017-01-18T00:00:00.000000000'),
numpy.datetime64('2017-01-19T00:00:00.000000000'),
numpy.datetime64('2017-01-20T00:00:00.000000000'),
numpy.datetime64('2017-01-23T00:00:00.000000000'),
numpy.datetime64('2017-01-24T00:00:00.000000000'),
numpy.datetime64('2017-01-25T00:00:00.000000000'),
numpy.datetime64('2017-01-26T00:00:00.000000000'),
numpy.datetime64('2017-01-27T00:00:00.000000000'),
numpy.datetime64('2017-02-01T00:00:00.000000000')]
而不是使用循环一个空列表逐个转换,是否有任何快捷方式?谢谢。
答案 0 :(得分:2)
我最喜欢的解决方案是在这个帖子中看起来有点隐藏:
Converting between datetime, Timestamp and datetime64,即使用tolist()
。由于tolist()
会返回不同的类型,因此根据数组类型,需要转换为ms
来获取datetime
个对象。可以使用matplotlib直接绘制datetime
个对象,也可以在其上应用matplotlib.dates.date2num()
。
所以如果a
是如上所述的numpy数组,那么
x = a.astype("M8[ms]").tolist()
会生成一个日期时间对象列表。
完整示例:
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
import matplotlib.dates as mdates
a = np.array([np.datetime64('2017-01-03T00:00:00.000000000'),
np.datetime64('2017-01-04T00:00:00.000000000'),
np.datetime64('2017-01-05T00:00:00.000000000'),
np.datetime64('2017-01-06T00:00:00.000000000'),
np.datetime64('2017-01-09T00:00:00.000000000'),
np.datetime64('2017-01-10T00:00:00.000000000'),
np.datetime64('2017-01-11T00:00:00.000000000'),
np.datetime64('2017-01-12T00:00:00.000000000'),
np.datetime64('2017-01-13T00:00:00.000000000'),
np.datetime64('2017-01-16T00:00:00.000000000'),
np.datetime64('2017-01-17T00:00:00.000000000'),
np.datetime64('2017-01-18T00:00:00.000000000'),
np.datetime64('2017-01-19T00:00:00.000000000'),
np.datetime64('2017-01-20T00:00:00.000000000'),
np.datetime64('2017-01-23T00:00:00.000000000'),
np.datetime64('2017-01-24T00:00:00.000000000'),
np.datetime64('2017-01-25T00:00:00.000000000'),
np.datetime64('2017-01-26T00:00:00.000000000'),
np.datetime64('2017-01-27T00:00:00.000000000'),
np.datetime64('2017-02-01T00:00:00.000000000')])
x = a.astype("M8[ms]").tolist()
y = np.random.rand(len(a))
plt.plot(x, y, color="limegreen")
plt.show()