我在理解k-means聚类中的聚类分配时遇到了问题。具体来说,我知道该点被分配到最近的簇(到簇中心的最短距离),但我无法重现结果。详情如下。
假设我有一个数据框 df1 :
set.seed(16)
df1 = data.frame(matrix(sample(1:50, replace = T), ncol=10, nrow=10000))
head(df1, n=4)
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1 35 35 35 35 35 35 35 35 35 35
2 13 13 13 13 13 13 13 13 13 13
3 23 23 23 23 23 23 23 23 23 23
4 12 12 12 12 12 12 12 12 12 12
在该数据帧上,我想执行k-means聚类(带缩放):
for_clst_km = scale(df1, center=F) #standardization with z-scores
kclust = 6 #number of clusters
Clusters <- kmeans(for_clst_km, kclust)
聚类完成后,我可以将聚类分配给原始数据框:
df1$cluster = Clusters$cluster
出于测试目的,让我们选择3号集群。
library(dplyr)
cluster3 = df1 %>% filter(cluster == 3)
因为我想首先扩展cluster3,我需要删除集群列,然后执行z标准化:
cluster3$cluster = NULL
cluster3_1 = (cluster3-colMeans(df1))/apply(df1,2,sd)
现在,当我在cluster3_1中缩放值时,我可以计算每个群集的中心点的距离:
centroids = data.matrix(Clusters$centers)
dist_to_clust1 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[1,])^2)))
dist_to_clust2 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[2,])^2)))
dist_to_clust3 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[3,])^2)))
dist_to_clust4 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[4,])^2)))
dist_to_clust5 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[5,])^2)))
dist_to_clust6 = apply(cluster3_1, 1, function(x) sqrt(sum((x-centroids[6,])^2)))
dist_to_clust = cbind(dist_to_clust1, dist_to_clust2, dist_to_clust3, dist_to_clust4, dist_to_clust5, dist_to_clust6)
最后,在观察到每个群集的距离之后,很明显我做错了什么。例如,查看第五行,我发现该点最接近群集4 (例如,这是最小的值)。
head(dist_to_clust)
dist_to_clust1 dist_to_clust2 dist_to_clust3 dist_to_clust4 dist_to_clust5 dist_to_clust6
[1,] 11.015929 11.116591 10.946547 11.173597 11.034535 10.968986
[2,] 13.136060 12.848511 12.967084 13.379930 12.840414 12.861085
[3,] 13.681588 13.314994 13.492713 13.942535 13.322293 13.360695
[4,] 10.506083 10.725233 10.467843 10.636465 10.621233 10.529714
[5,] 2.157906 5.392285 3.120574 1.168265 4.855553 4.197457
[6,] 11.015929 11.116591 10.946547 11.173597 11.034535 10.968986
我认为缩放方法存在错误。我不确定我是否可以使用整个数据框的均值和标准偏差来实际扩展簇3点。
请你分享一下你的想法,我做错了什么? 非常感谢你!
答案 0 :(得分:1)
从我在交叉验证时的答案:
这是因为df-colmeans(df)
并没有按照您的想法行事。
让我们试试代码:
a=matrix(1:9,nrow=3)
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
colMeans(a)
[1] 2 5 8
a-colMeans(a)
[,1] [,2] [,3]
[1,] -1 2 5
[2,] -3 0 3
[3,] -5 -2 1
apply(a,2,function(x) x-mean(x))
[,1] [,2] [,3]
[1,] -1 -1 -1
[2,] 0 0 0
[3,] 1 1 1
您会发现a-colMeans(a)
与apply(a,2,function(x) x-mean(x))
做的不同,这是您想要居中的。
您可以编写apply
来为您执行完整的自动缩放:
apply(a,2,function(x) (x-mean(x))/sd(x))
[,1] [,2] [,3]
[1,] -1 -1 -1
[2,] 0 0 0
[3,] 1 1 1
scale(a)
[,1] [,2] [,3]
[1,] -1 -1 -1
[2,] 0 0 0
[3,] 1 1 1
attr(,"scaled:center")
[1] 2 5 8
attr(,"scaled:scale")
[1] 1 1 1
但是这样做没有意义,因为scale
会为你做。 :)
此外,尝试聚类:
set.seed(16)
nc=10
nr=10000
# Make sure you draw enough samples: There was extreme periodicity in your sampling
df1 = matrix(sample(1:50, size=nr*nc,replace = T), ncol=nc, nrow=nr)
head(df1, n=4)
for_clst_km = scale(df1) #standardization with z-scores
nclust = 4 #number of clusters
Clusters <- kmeans(for_clst_km, nclust)
# For extracting scaled values: They are already available in for_clst_km
cluster3_sc=for_clst_km[Clusters$cluster==3,]
# Simplify code by putting distance in function
distFun=function(mat,centre) apply(mat, 1, function(x) sqrt(sum((x-centre)^2)))
centroids=Clusters$centers
dists=matrix(nrow=nrow(cluster3_sc),ncol=nclust) # Allocate matrix
for(d in 1:nclust) dists[,d]=distFun(cluster3_sc,centroids[d,]) # Calculate observation distances to centroid d=1..nclust
whichMins=apply(dists,1,which.min) # Calculate the closest centroid per observation
table(whichMins) # Tabularize
> table(whichMins)
whichMins
3
2532
HTH HAND,答案 1 :(得分:0)
您的手写缩放代码已损坏。 检查结果数据的标准偏差,它不是1。
为什么不使用
cluster3 = for_clst_km %>% filter(cluster == 3)