这是我的数据框
CATEGORY BRAND
0 Noodle Anak Mas
1 Noodle Anak Mas
2 Noodle Indomie
3 Noodle Indomie
4 Noodle Indomie
23 Noodle Indomie
24 Noodle Mi Telor Cap 3
25 Noodle Mi Telor Cap 3
26 Noodle Pop Mie
27 Noodle Pop Mie
...
我已经确定df类型是字符串,我的代码是
df = data[['CATEGORY', 'BRAND']].astype(str)
import collections, re
texts = df
bagsofwords = [ collections.Counter(re.findall(r'\w+', txt))
for txt in texts]
sumbags = sum(bagsofwords, collections.Counter())
当我打电话
sumbags
输出
Counter({'BRAND': 1, 'CATEGORY': 1})
我希望sumbags中的所有数据都计算在标题之外,以便明确表达
之类的内容Counter({'Noodle': 10, 'Indomie': 4, 'Anak': 2, ....}) # because it is bag of words
我需要每1个字数
答案 0 :(得分:5)
IIUIC,使用
选项1] Numpy flatten
和split
In [2535]: collections.Counter([y for x in df.values.flatten() for y in x.split()])
Out[2535]:
Counter({'3': 2,
'Anak': 2,
'Cap': 2,
'Indomie': 4,
'Mas': 2,
'Mi': 2,
'Mie': 2,
'Noodle': 10,
'Pop': 2,
'Telor': 2})
选项2]
使用value_counts()
In [2536]: pd.Series([y for x in df.values.flatten() for y in x.split()]).value_counts()
Out[2536]:
Noodle 10
Indomie 4
Mie 2
Pop 2
Anak 2
Mi 2
Cap 2
Telor 2
Mas 2
3 2
dtype: int64
选项3]
使用stack
和value_counts
In [2582]: df.apply(lambda x: x.str.split(expand=True).stack()).stack().value_counts()
Out[2582]:
Noodle 10
Indomie 4
Mie 2
Pop 2
Anak 2
Mi 2
Cap 2
Telor 2
Mas 2
3 2
dtype: int64
详细
In [2516]: df
Out[2516]:
CATEGORY BRAND
0 Noodle Anak Mas
1 Noodle Anak Mas
2 Noodle Indomie
3 Noodle Indomie
4 Noodle Indomie
23 Noodle Indomie
24 Noodle Mi Telor Cap 3
25 Noodle Mi Telor Cap 3
26 Noodle Pop Mie
27 Noodle Pop Mie