library(dplyr)
library(forcats)
使用下面的简单数据框和代码,我想创建一个包含总行数和子行数的表。例如,第一行是来自NEW列的“Region1”和来自TotNumber列的70,然后是“Town1”,“Town2”和“Town3”的三行,以及来自Number的相关数字列,和“Region2”和“Region3”相同。我附上了所需表格的图片......
我也在寻找使用dplyr和Tidyverse的解决方案。
Number<-c(10,30,30,10,56,30,40,50,33,10)
Town<-("Town1","Town2","Town3","Town4","Town5","Town6","Town7","Town8","Town9","Town10")
DF<-data_frame(Town,Number)
DF<-DF%>%mutate_at(vars(Town),funs(as.factor))
创建Region变量...
DF<-DF%>%mutate(NEW=fct_collapse(Town,
Region1=c("Town1","Town2","Town3"),
Region2=c("Town4","Town5","Town6"),
Region3=c("Town7","Town8","Town9","Town10")))%>%
group_by(NEW)%>%
summarise(TotNumber=sum(Number))
答案 0 :(得分:0)
修改上一个管道并添加一些添加步骤:
library(dplyr)
library(forcats)
DF%>%mutate(NEW=fct_collapse(Town,
Region1=c("Town1","Town2","Town3"),
Region2=c("Town4","Town5","Town6"),
Region3=c("Town7","Town8","Town9","Town10")),
NEW = as.character(NEW)) %>%
group_by(NEW) %>%
mutate(TotNumber=sum(Number)) %>%
ungroup() %>%
split(.$NEW) %>%
lapply(function(x) rbind(setNames(x[1,3:4], names(x)[1:2]), x[1:2])) %>%
do.call(rbind, .)
<强>结果:强>
# A tibble: 13 × 2
Town Number
* <chr> <dbl>
1 Region1 70
2 Town1 10
3 Town2 30
4 Town3 30
5 Region2 96
6 Town4 10
7 Town5 56
8 Town6 30
9 Region3 133
10 Town7 40
11 Town8 50
12 Town9 33
13 Town10 10
数据:强>
Number<-c(10,30,30,10,56,30,40,50,33,10)
Town<-c("Town1","Town2","Town3","Town4","Town5","Town6","Town7","Town8","Town9","Town10")
DF<-data_frame(Town,Number) %>%
mutate_at(vars(Town),funs(as.factor))