我已经创建了我的serving_input_fn,以便在实验中输入导出策略,但它不起作用。
def serving_input_fn():
receiver_tensors = {'example': tf.placeholder(tf.float32, [batch_size, None, n_inputs], name = 'inputs')}
features = receiver_tensors['example']
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
def serving_input_fn():
features = {'example': tf.placeholder(tf.float32, [batch_size, None, n_inputs], name = 'inputs')}
receiver_tensors = features ['example']
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
def serving_input_fn():
features = {'example': tf.placeholder(tf.float32, [batch_size, None, n_inputs], name = 'inputs')}
#also tried
#features = {'example': tf.placeholder(tf.float32, [None, n_inputs], name = 'inputs')}
return tf.estimator.export.build_raw_serving_input_receiver_fn(features, default_batch_size = batch_size)
def experiment_fn(run_config, hparams):
estimator = tf.estimator.Estimator(...)
)
export_strategies = saved_model_export_utils.make_export_strategy(serving_input_fn = serving_input_fn)
return learn.Experiment(
estimator = estimator,
train_input_fn = train_input_fn,
eval_input_fn = eval_input_fn,
train_steps = 100,
export_strategies = export_strategies)
这三个serving_input_fn实现都没有工作。你有什么想法吗?
谢谢!