我的数据框如下所示
Unit # Start Date End Date
7417 2/6/2017 3/5/2017
我想将它拆分数周 输出应该是
Unit # Start Date End Date
7417 2/6/2017 2/12/2017
7417 2/13/2017 2/19/2017
7417 2/20/2017 2/26/2017
7417 2/27/2017 3/05/2017
有人可以帮我吗?
答案 0 :(得分:0)
你没有写任何代码,所以我想给你一个完整的解决方案。
这是在两个日期之间迭代几周的方法:
import datetime
date_format = "%m/%d/%Y"
d1 = datetime.datetime.strptime("2/6/2017", date_format).date()
d2 = datetime.datetime.strptime("3/5/2017", date_format).date()
d = d1
step = datetime.timedelta(days=7)
while d < d2:
print(d.strftime(date_format))
d += step
# 02/06/2017
# 02/13/2017
# 02/20/2017
# 02/27/2017
答案 1 :(得分:0)
假设您有一个包含多个Unit #
的数据框,您可以使用以下代码来实现您的目标:
import datetime
import pandas as pd
df = pd.DataFrame([[7417, "2/6/2017", "3/5/2017"],[7418, "3/6/2017", "4/7/2017"]],
columns = ["Unit #", "Start Date", "End Date"])
# Convert dtaframe to dates
df['Start Date'] = pd.to_datetime(df['Start Date'])
df['End Date'] = pd.to_datetime(df['End Date'])
df_out = pd.DataFrame()
week = 7
# Iterate over dataframe rows
for index, row in df.iterrows():
date = row["Start Date"]
date_end = row["End Date"]
unit = row["Unit #"]
# Get the weeks for the row
while date < date_end:
date_next = date + datetime.timedelta(week - 1)
df_out = df_out.append([[unit, date, date_next]])
date = date_next + datetime.timedelta(1)
# Remove extra index and assign columns as original dataframe
df_out = df_out.reset_index(drop=True)
df_out.columns = df.columns
因此,如果您的输入数据框是:
>>> df
Unit # Start Date End Date
0 7417 2017-02-06 00:00:00 2017-03-05 00:00:00
1 7418 2017-03-06 00:00:00 2017-04-07 00:00:00
输出df_out
看起来像:
>>> df_out
Unit # Start Date End Date
0 7417 2017-02-06 00:00:00 2017-02-12 00:00:00
1 7417 2017-02-13 00:00:00 2017-02-19 00:00:00
2 7417 2017-02-20 00:00:00 2017-02-26 00:00:00
3 7417 2017-02-27 00:00:00 2017-03-05 00:00:00
4 7418 2017-03-06 00:00:00 2017-03-12 00:00:00
5 7418 2017-03-13 00:00:00 2017-03-19 00:00:00
6 7418 2017-03-20 00:00:00 2017-03-26 00:00:00
7 7418 2017-03-27 00:00:00 2017-04-02 00:00:00
8 7418 2017-04-03 00:00:00 2017-04-09 00:00:00