我的数据称为aphro,是每日降水
Date Terai+Siwalik Hilly
<dttm> <dbl> <dbl>
1 1951-01-01 1.92201 1.16439
2 1951-02-01 0.00000 0.00000
3 1951-03-01 0.00000 0.00000
4 1951-04-01 0.00000 0.00000
5 1951-05-01 0.00000 0.00000
6 1951-06-01 0.00000 0.00000
我正在尝试查找每月总计,而我的代码是
aphro_m <- aphro %>%
mutate(month =month(Date), year = year(Date)) %>%
group_by(month, year) %>%
summarise(total_TaS =sum(`Terai+Siwalik`), Date =first(Date)
)
但是我检查时的输出高于实际值?
请帮忙。
答案 0 :(得分:0)
处理日期问题的最简单方法是使用parse_date_time
中的lubridate
:
> aphro %>%
+ as_data_frame %>%
+ mutate(Date = parse_date_time(Date, c("dmy", "mdy")),
+ Month = month(Date), Year = year(Date)) %>%
+ group_by(Month, Year) %>%
+ summarise(total_TaS =sum(`Terai.Siwalik`), Date=first(Date)) %>%
+ ungroup()
# A tibble: 768 x 4
Month Year total_TaS Date
<dbl> <dbl> <dbl> <dttm>
1 1 1951 16.057931 1951-01-01
2 1 1952 5.101386 1952-01-01
3 1 1953 45.921963 1953-01-01
4 1 1954 29.684509 1954-01-01
5 1 1955 20.141103 1955-01-01
6 1 1956 26.096579 1956-01-01
7 1 1957 70.174464 1957-01-01
8 1 1958 26.157329 1958-01-01
9 1 1959 72.161088 1959-01-01
10 1 1960 2.401913 1960-01-01
# ... with 758 more rows
>