如何在hive中同时删除所有分区?

时间:2017-09-19 18:41:40

标签: hive hive-partitions

Hive版本1.1

我有一个hive外部表,如下所示

 CREATE EXTERNAL TABLE `schedule_events`(
  `schedule_id` string COMMENT 'from deserializer',
  `service_key` string COMMENT 'from deserializer',
  `event_start_date_time` string COMMENT 'from deserializer',
  `event_id` string COMMENT 'from deserializer',
  `event_type` string COMMENT 'from deserializer',
  `transitional_key` string COMMENT 'from deserializer',
  `created_date_time` string COMMENT 'from deserializer',
  `bus_date` string COMMENT 'from deserializer')
    PARTITIONED BY (
                    `year` string,
                    `month` string,
                    `day` string)
   ROW FORMAT SERDE
   'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
   STORED AS INPUTFORMAT
   'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
   OUTPUTFORMAT
   'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
   LOCATION
   'hdfs://nameservice1/hadoop/raw/omega/scheduled_events'
  TBLPROPERTIES (
    'avro.schema.url'='hdfs:////hadoop/raw/omega/schema/schedule_events.avsc',
   'transient_lastDdlTime'='1505742141')

现在要删除特定分区,我可以运行ALTER命令,如下所示

 ALTER TABLE schedule_events DROP IF EXISTS PARTITION  (year='2016',month='06',day='01')
 Dropped the partition year=2016/month=06/day=01

 hive> show partitions schedule_events;
 OK
 year=2017/month=09/day=01
 year=2017/month=09/day=02
 year=2017/month=09/day=03
 year=2017/month=09/day=04
 year=2017/month=09/day=05

但是这个表有很多分区

如何一次删除所有现有分区?我想一次删除所有现有分区?这可能吗?

4 个答案:

答案 0 :(得分:15)

有多种选择,一种是:

$scope.arrString1[i]
  

Hive:扩展ALTER TABLE DROP PARTITION语法以使用所有比较器

     

“...要从Hive表中删除分区,这有效:
  ALTER TABLE foo DROP PARTITION(ds ='date')
  ...但它也应该在日期之前删除所有分区   ALTER TABLE foo DROP PARTITION(ds<'date')   这个任务是为所有的实现ALTER TABLE DROP PARTITION   比较器,< > < => =<> =!=而不只是for =“

     

https://issues.apache.org/jira/browse/HIVE-2908

答案 1 :(得分:5)

你可以使用类似的东西:

ALTER TABLE schedule_events drop if exists partition (year>'0');

答案 2 :(得分:0)

alter table schema_name.table_name drop partition(partition_column!='');

答案 3 :(得分:0)

使用spark sql:

val paritions_values = spark.sql("show partitions "+databasename+'.'+tablename)
.collect().map(f=>f(0).toString)
.toArray.mkString("partition(", "," , "\")")
.replace("," , "\") ,partition(")
.replace("=", "=\"")

spark.sql("alter table "+databasename+'.'+tablename+" drop "+paritions_values)