我有以下宽格式数据框:
df<-structure(list(ID = c(1, 2, 3), A.1 = c(0, 1, 0), A.2 = c(1,
1, 0), B.1 = c(99, 99, 0), B.2 = c(99, 99, 0)), .Names = c("ID",
"A.1", "A.2", "B.1", "B.2"), row.names = c(NA, 3L), class = "data.frame")
> df
ID A.1 A.2 B.1 B.2
1 1 0 1 99 99
2 2 1 1 99 99
3 3 0 0 0 0
现在我将其更改为长格式:
long.df<-reshape (df,idvar = "ID", varying=c(2:5),v.names= c("A", "B"),
timevar="time",direction="long", sep = ".")
以下是生成的长数据框:
> long.df
ID time A B
1.1 1 1 0 1
2.1 2 1 1 1
3.1 3 1 0 0
1.2 1 2 99 99
2.2 2 2 99 99
3.2 3 2 0 0
因此,此转换不正确,值变得混乱。例如,时间点1的ID 1的参数B的值从99变为1,参数A的值在第二时间点的ID 1和2变为99,依此类推。
预期输出应如下:
> expected.long.df
ID time A B
1.1 1 1 0 99
2.1 2 1 1 99
3.1 3 1 0 0
1.2 1 2 1 99
2.2 2 2 1 99
3.2 3 2 0 0
不知道为什么会这样。对任何建议都会非常有帮助。
答案 0 :(得分:4)
问题发生在varying
。我们需要正确指定模式
reshape(df, idvar = "ID", varying = list(grep("^A", names(df)),
grep("^B", names(df))), direction = "long", v.names = c("A", "B"))
# ID time A B
#1.1 1 1 0 99
#2.1 2 1 1 99
#3.1 3 1 0 0
#1.2 1 2 1 99
#2.2 2 2 1 99
#3.2 3 2 0 0
答案 1 :(得分:2)
我会使用tidyr
库:
library(tidyr)
temp1 = gather(df, key = "x", value = "y", -ID)
temp2 = separate(temp1, x, into = c("z", "time"), sep = "[.]")
temp3 = spread(temp2, key = z, value = y)
temp3
表看起来像您想要的结果,但不是完全相同的顺序。使用dplyr
的{{1}}来做对:
arrange
答案 2 :(得分:2)
试试这个。您实际上是在查看melt
操作。
library(data.table)
df<-structure(list(ID = c(1, 2, 3), A.1 = c(0, 1, 0), A.2 = c(1, 1, 0), B.1 = c(99, 99, 0), B.2 = c(99, 99, 0)), .Names = c("ID", "A.1", "A.2", "B.1", "B.2"), row.names = c(NA, 3L), class = "data.frame")
dt <- setDT(df)
melt(dt, id = 'ID', measure = patterns('^A.', '^B.'), value.name = c('A', 'B'), variable.name = 'time')
ID time A B
1: 1 1 0 99
2: 2 1 1 99
3: 3 1 0 0
4: 1 2 1 99
5: 2 2 1 99
6: 3 2 0 0
答案 3 :(得分:2)
以你reshape
和stringr
:str_split_fixed
df=melt(df,'ID')
df[,c('Time','Name')]=str_split_fixed(as.character(df$variable),"[.]",2)
df$variable=NULL
reshape(df, idvar = c("ID","Name"), timevar = "Time", direction = "wide")
ID Name value.A value.B
1 1 1 0 99
2 2 1 1 99
3 3 1 0 0
4 1 2 1 99
5 2 2 1 99
6 3 2 0 0