STM32F303:带DMA的ADC只能工作几次

时间:2017-09-18 22:27:19

标签: stm32 dma adc nucleo

我目前正在使用具有STM32F303RE芯片的Nucleo-64电路板。对于编程,我使用带有STM32软件包的Arduino IDE。我现在想避免使用HAL,因为我认为当你必须同时学习寄存器和库函数时,它会相当混乱。

我希望能够以5.1 Msps(F303的最大值)并行采样4个输入信号。我的计划是保持ADC运行。然后,当我想取样时,我重置DMA标志并将计数器(CNDTR-Register)设置为我想要捕获的样本量。

以下部分显示了我实现此目标的尝试。它基本上几乎可以工作,但只有有限的时间。它的工作频率似乎取决于我在程序中的某些部分输入的随机睡眠值。 例如:如果我在takeSamples() - 函数之后输入10ms的延迟,则程序将在主循环的41个循环中起作用 - 然后它会卡住。

当它卡住时,会执行以下操作:DMA-CNDTR寄存器仅减少一个值,然后它就会停留在那里。所以程序正在等待寄存器值变为零,但这种情况永远不会发生。 ADC一直在采样,我可以很好地读取ADC数据寄存器。

有没有人知道什么原因导致DMA在一定次数后停止传输数据?

以下是该计划的相关部分:

void setup() {
  Serial.begin(57600);

  // Enable clocks
  RCC->AHBENR |= (1 << 17); // GPIOA
  RCC->AHBENR |= (1 << 18); // GPIOB

  // Set ADC pins to analog input
  GPIOA->MODER |= (0b11 << 0); // PA0 for ADC1
  GPIOA->MODER |= (0b11 << 8); // PA4 for ADC2
  GPIOB->MODER |= (0b11 << 2); // PB1 for ADC3
  GPIOB->MODER |= (0b11 << 24); // PB1 for ADC4

  initClock();
  DMA_init();
  ADC_init();

  // Start conversion
  ADC1->CR |= (1 << 2);
  ADC3->CR |= (1 << 2);
}

void initClock()
{
  FLASH->ACR |= (0b10 << 0); // add two wait states

  RCC->CR |= (1 << 18); // Bypass HSE, use external clock signal from STLink instead

  RCC->CR &= ~(1 << 24); // turn off PLL
  delay(100);
  RCC->CFGR |= (0b0000 << 4); // Do not divide system clock
  RCC->CFGR |= (0b0111 << 18);  // PLL multiply = 9
  RCC->CFGR |= (0b10 << 15); // use HSE as PLL source
  RCC->CFGR |= (1 << 10);  // not divided
  delay(100);
  RCC->CR |= (1 << 24); // turn on PLL
  delay(100);
}

void ADC_init(void) {

  RCC->CFGR2 |= (0b10000 << 4); // Prescaler
  RCC->CFGR2 |= (0b10000 << 9); // Prescaler
  RCC->AHBENR |= (1 << 28); // turn on ADC12 clock
  RCC->AHBENR |= (1 << 29); // turn on ADC34 clock

  // Set ADC clock
  ADC12_COMMON->CCR |= (0b01 << 16); // 0b01
  ADC34_COMMON->CCR |= (0b01 << 16); // 0b01


  // disable the ADC
  ADC1->CR &= ~(1 << 0);
  ADC2->CR &= ~(1 << 0);
  ADC3->CR &= ~(1 << 0);
  ADC4->CR &= ~(1 << 0);

  // enable the ADC voltage regulator
  ADC1->CR &= ~(1 << 29);
  ADC2->CR &= ~(1 << 29);
  ADC3->CR &= ~(1 << 29);
  ADC4->CR &= ~(1 << 29);

  ADC1->CR |= (1 << 28);
  ADC2->CR |= (1 << 28);
  ADC3->CR |= (1 << 28);
  ADC4->CR |= (1 << 28);

  // start ADC calibration cycle
  ADC1->CR |= (1 << 31);
  // wait for calibration to complete
  while (ADC1->CR & (1 << 31));

  // start ADC calibration cycle
  ADC2->CR |= (1 << 31);
  // wait for calibration to complete
  while (ADC2->CR & (1 << 31));

  // start ADC calibration cycle
  ADC3->CR |= (1 << 31);
  // wait for calibration to complete
  while (ADC3->CR & (1 << 31));

  // start ADC calibration cycle
  ADC4->CR |= (1 << 31);
  // wait for calibration to complete
  while (ADC4->CR & (1 << 31));

  // enable the ADC
  ADC1->CR |= (1 << 0);
  ADC2->CR |= (1 << 0);
  ADC3->CR |= (1 << 0);
  ADC4->CR |= (1 << 0);

  while (!(ADC1->ISR & (1 << 0)));
  while (!(ADC2->ISR & (1 << 0)));
  while (!(ADC3->ISR & (1 << 0)));
  while (!(ADC4->ISR & (1 << 0)));

  // Select ADC Channels
  ADC1->SQR1 = (1 << 6);
  ADC2->SQR1 = (1 << 6);
  ADC3->SQR1 = (1 << 6);
  ADC4->SQR1 = (3 << 6);

  // Set sampling time for regular group 1
  ADC1->SMPR1 |= (0b000 << 3); // 0b000 -> 1.5 clock cycles, shortest available sampling time
  ADC2->SMPR1 |= (0b000 << 3);
  ADC3->SMPR1 |= (0b000 << 3);
  ADC4->SMPR1 |= (0b000 << 3);

  // Regular sequence settings
  ADC1->SQR1 |= (0b0000 << 0); // One conversion in the regular sequence
  ADC2->SQR1 |= (0b0000 << 0);
  ADC3->SQR1 |= (0b0000 << 0);
  ADC4->SQR1 |= (0b0000 << 0);

  // Enable continuous conversion mode
  ADC1->CFGR |= (1 << 13); // Master ADC1 + ADC2
  ADC3->CFGR |= (1 << 13); // Master ADC3 + ADC4

  ADC12_COMMON->CCR |= (0b00110 << 0);
  ADC34_COMMON->CCR |= (0b00110 << 0);

  // DMA mode
  ADC12_COMMON->CCR |= (0 << 13); // 0 -> One Shot; 1 -> Circular
  ADC34_COMMON->CCR |= (0 << 13);

  // DMA mode for 12-bit resolution
  ADC12_COMMON->CCR |= (0b10 << 14);
  ADC34_COMMON->CCR |= (0b10 << 14);
}

void DMA_init(void) {

  // Enable clocks
  RCC->AHBENR |= (1 << 0); // DMA1
  RCC->AHBENR |= (1 << 1); // DMA2

  // Transfer complete interrupt enable
  DMA1_Channel1->CCR |= (1 << 1);
  DMA2_Channel5->CCR |= (1 << 1);

  // Memory increment mode
  DMA1_Channel1->CCR |= (1 << 7);
  DMA2_Channel5->CCR |= (1 << 7);

  // Peripheral size
  DMA1_Channel1->CCR |= (0b11 << 8);
  DMA2_Channel5->CCR |= (0b11 << 8);

  // Memory size
  DMA1_Channel1->CCR |= (0b11 << 10);
  DMA2_Channel5->CCR |= (0b11 << 10);

  // Number of data to transfer
  DMA1_Channel1->CNDTR = uint32_t(maxSamples);
  DMA2_Channel5->CNDTR = uint32_t(maxSamples);

  // Peripheral address register
  DMA1_Channel1->CPAR |= (uint32_t)&ADC12_COMMON->CDR;
  DMA2_Channel5->CPAR |= (uint32_t)&ADC34_COMMON->CDR;

  // Memory address register
  DMA1_Channel1->CMAR |= uint32_t(&dataPoints1232);
  DMA2_Channel5->CMAR |= uint32_t(&dataPoints3432);

  // Reset flags
  DMA1->IFCR |= 0xFF;
  DMA2->IFCR |= 0xFF;
}

void takeSamples(void) {

  // Reset flags
  DMA1->IFCR |= (0b1111111111111111111111111111111 << 0);
  DMA2->IFCR |= (0b1111111111111111111111111111111 << 0);

  // Number of data to transfer
  DMA1_Channel1->CNDTR = uint32_t(maxSamples);
  DMA2_Channel5->CNDTR = uint32_t(maxSamples);

  delay(10); // does not work without this random delay

  elapsedTime = micros();
  // Enable DMA
  DMA1_Channel1->CCR |= (1 << 0);
  DMA2_Channel5->CCR |= (1 << 0);

  while ((DMA1_Channel1->CNDTR > 0) || (DMA2_Channel5->CNDTR > 0))
  }

  elapsedTime = micros() - elapsedTime;

  // Reset flags
  DMA1->IFCR |= (0b1111111111111111111111111111111 << 0);
  DMA2->IFCR |= (0b1111111111111111111111111111111 << 0);;

  DMA1_Channel1->CCR &= ~(1 << 0);
  DMA2_Channel5->CCR &= ~(1 << 0);

  // ADC stop conversion
  ADC1->CR |= (1 << 4);
  ADC3->CR |= (1 << 4);

  while ((ADC1->CR & (1 << 2)) || (ADC3->CR & (1 << 2)));

  ADC12_COMMON->CCR &= ~(0b10 << 14);
  ADC34_COMMON->CCR &= ~(0b10 << 14);

  ADC12_COMMON->CCR |= (0b10 << 14);
  ADC34_COMMON->CCR |= (0b10 << 14);

  // ADC start conversion
  ADC1->CR |= (1 << 2);
  ADC3->CR |= (1 << 2);
}

void loop() {
  takeSamples();
  Serial.print("Elapsed time: ");
  Serial.println(elapsedTime);
}

我真的非常感谢有关此问题的任何提示或提示!

问候 尼

编辑:我对使用STM32F401芯片的nucleo-64也有同样的问题。另一方面,STM32F4 Discovery工作得很好。我的F103飞行控制板也没有这样的问题。

1 个答案:

答案 0 :(得分:2)

作为示例,使用计时器进行简单的转换。

void ReadChannels(int channel, size_t nsamples, uint8_t *obuff) 
 {
     TIM1 -> CR1 = 0;
     TIM1 -> CR2 = 0;
     TIM1 -> PSC = PSC;
     TIM1 -> ARR = ARR;
     TIM1 -> EGR |= TIM_EGR_UG;

     DMA1_Channel1 -> CPAR = (uint32_t)&(ADC1 -> DR);
     DMA1_Channel1 -> CMAR = (uint32_t)obuff;
     DMA1_Channel1 -> CNDTR = nsamples;
     DMA1_Channel1 -> CCR = DMA_CCR_MINC | DMA_CCR_TCIE | DMA_CCR_EN;

     ADC1 -> CFGR = ADC_CFGR_DMAEN | (0b10 << ADC_CFGR_RES_Pos) | (9 << ADC_CFGR_EXTSEL_Pos) | (0b01 << ADC_CFGR_EXTEN_Pos);
     ADC1 -> SMPR1 = 0;
     ADC1 -> SMPR2 = 0;

     ADC1 -> SQR1 &= ~(ADC_SQR1_L_Msk);
     ADC1 -> SQR1 &= ~(ADC_SQR1_SQ1_Msk);

     ADC1 -> SQR1 |= channel << ADC_SQR1_SQ1_Pos);
     ADC1 -> CR |= ADC_CR_ADSTART;

     TIM1 -> CR2 |= TIM_CR2_MMS_1;
     TIM1 -> CR1 |= TIM_CR1_CEN;

     DMA1_Channel1 -> CCR = 0;
     TIM1 -> CR1 = 0;
 }