我有一个csv文件,因此列表或数据框包含访问露营地的开始和结束日期。
import types from '../utilities/types.js'
export const actions = {
loginDefault: (username, password) => ({
type: types.LOGIN_DEFAULT,
meta: {
type: 'api',
path: '/users/token',
method: 'POST'
},
payload: {username, password}
})
};
export default actions
我想计算一个时间段内每天有一行的数据框,其中一列计算累计访问者,一列表示当天居住的访客数量和累计访客天数。
我目前有一些hacky代码将访问者数据读入普通的python列表 start_date end_date
0 2016-01-21 2016-01-24
1 2016-01-28 2016-01-29
2 2016-02-02 2016-02-10
3 2016-02-08 2016-02-12
...
,并为句点/年中的每个日期创建另一个列表visitor_array
。然后,它会针对year_array
中的每个日期进行循环,内部循环超过year_array
,并将visitor_array
的当前元素附加到当天新访问者数和常驻访问者数。
year_array
然后我将temp_day = datetime.date(2016,1,1)
year_array = [[temp_day + datetime.timedelta(days=d)] for d in range(365)]
for day in year_array:
new_visitors = 0
occupancy = 0
for visitor in visitor_array:
if visitor[0] = day:
new_visitors +=1
if (visitor[0] <= day[0]) and (day[0] <= visitor[1]):
occupancy +=1
day = day.append(new_visitors)
day = day.append(occupancy)
转换为pandas数据框,创建一些cumsum列并忙于绘图等等。
在熊猫中有没有更优雅的pythonic / pandasic方式吗?
答案 0 :(得分:0)
考虑df
数据框的开始/结束值和d
最终数据框,我会做出类似这样的事情:
代码:
import numpy as np
import pandas as pd
import datetime
# ---- Create df sample
df = pd.DataFrame([['21/01/2016','24/01/2016'],
['28/01/2016','29/01/2016'],
['02/02/2016','10/02/2016'],
['08/02/2016','12/02/2016']], columns=['start','end'] )
df['start'] = pd.to_datetime(df['start'])
df['end'] = pd.to_datetime(df['end'])
# ---- Create day index
temp_day = datetime.date(2016,1,1)
index = [(temp_day + datetime.timedelta(days=d)) for d in range(365)]
# ---- Create empty result df
# initialize df, set days as datetime in index
d = pd.DataFrame(np.zeros((365,3)),
index=pd.to_datetime(index),
columns=['new_visitor','occupancy','occupied_day'])
# ---- Iterrate over df to fill d (final df)
for i, row in df.iterrows():
# Add 1 if first day for new visitor
d.loc[row.start,'new_visitor'] += 1
# 1 if some visitor in df.start, df.end
d.loc[row.start:row.end,'occupied_day'] = 1
# Add 1 for visitor occupancy these days
d.loc[row.start:row.end,'occupancy'] += 1
#cumulated days = some of occupied days
d['cumul_days'] = d.occupied_day.cumsum()
#cumulated visitors = some of occupancy
d['cumul_visitors'] = d.occupancy.cumsum()
结果输出print(d.loc['2016-01-21':'2016-01-29'])
的一些摘录:
index new_visitor occupancy occupied_day cumul_days cumul_visitors
2016-01-21 1.0 1.0 1.0 1.0 1.0
2016-01-22 0.0 1.0 0.0 1.0 2.0
2016-01-23 0.0 1.0 0.0 1.0 3.0
2016-01-24 0.0 1.0 0.0 1.0 4.0
2016-01-25 0.0 0.0 0.0 1.0 4.0
2016-01-26 0.0 0.0 0.0 1.0 4.0
2016-01-27 0.0 0.0 0.0 1.0 4.0
2016-01-28 1.0 1.0 1.0 2.0 5.0
2016-01-29 0.0 1.0 0.0 2.0 6.0
愿这段代码有用!