我想在Pandas DataFrame中查找所有ID的所有案例。 什么是有效的解决方案?我有大约10k的记录,它在服务器端处理。创建一个新的DataFrame是一个好主意,还是我可以使用更高效的数据结构?当id包含案例中的所有名称时,就会满足一个案例。
输入(Pandas DataFrame)
id | name |
-----------
1 | bla1 |
2 | bla2 |
2 | bla3 |
2 | bla4 |
3 | bla5 |
4 | bla9 |
5 | bla6 |
5 | bla7 |
6 | bla8 |
例
names [
[bla2, bla3, bla4], #case 1
[bla1, bla3, bla7], #case 2
[bla3, bla1, bla6], #case 3
[bla6, bla7] #case 4
]
需要的输出(除非有更有效的方式)
id | case1 | case2 | case3 | case4 |
------------------------------------
1 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 | 0 |
答案 0 :(得分:2)
names = [
['bla2', 'bla3', 'bla4'], # case 1
['bla1', 'bla3', 'bla7'], # case 2
['bla3', 'bla1', 'bla6'], # case 3
['bla6', 'bla7'] # case 4
]
df = df.groupby('id').apply(lambda x: \
pd.Series([int(pd.Series(y).isin(x['name']).all()) for y in names]))\
.rename(columns=lambda x: 'case{}'.format(x + 1))
df
+------+---------+---------+---------+---------+
| id | case1 | case2 | case3 | case4 |
|------+---------+---------+---------+---------|
| 1 | 0 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 |
| 5 | 0 | 0 | 0 | 1 |
| 6 | 0 | 0 | 0 | 0 |
+------+---------+---------+---------+---------+
首先,groupby
id
,然后对每个案例依次对每个案例进行一次检查。目标是检查组中的所有项目是否与给定案例匹配。这由isin
和列表推导一起处理。外部pd.Series
会将结果展开为单独的列,df.rename
用于重命名列。