python程序错误:ValueError:使用序列设置数组元素

时间:2017-09-18 00:39:32

标签: python numpy

我正在使用python burst_detection包链接(https://github.com/nmarinsek/burst_detection/blob/master/README.rst)来尝试结果。但程序总是有一些错误:ValueError:用序列设置数组元素。 有趣的是当我删除r数组中大于94的值时,一切正常。它停在第84个元素,因为r [83] = 342> 94。

错误的详细信息如下:

C:\Python27\lib\site-packages\burst_detection\__init__.py:29: RuntimeWarning: invalid value encountered in double_scalars
  return -np.log(np.float(c.binomial(d,r)) * (p**r) * (1-p)**(d-r))
Traceback (most recent call last):
  File "burstConstructDataPrepare.py", line 33, in <module>
    q, d, r, p = bd.burst_detection(r,d,n,s=2,gamma=1,smooth_win=1)
  File "C:\Python27\lib\site-packages\burst_detection\__init__.py", line 82, in burst_detection
    q[t] = np.where(cost[t,:] == min(cost[t,:]))
ValueError: setting an array element with a sequence.

源代码:

import pandas as pd
import os
import burst_detection as bd
import numpy as np
r = np.array([5, 8, 12, 12, 2, 4, 11, 15, 2, 3, 4, 29, 30, 10, 7, 1, 24, 18, 2, 2, 2, 2, 54, 2, 8, 2, 3, 12, 4, 2, 6, 18, 4, 4, 12, 2, 8, 2, 3, 2, 2, 5, 2, 2, 3, 9, 7, 8, 6, 9, 6, 1, 4, 20, 2, 16, 19, 2, 11, 4, 2, 38, 6, 7, 1, 2, 14, 4, 8, 2, 4, 2, 2, 6, 8, 27, 4, 2, 14, 2, 14, 8, 4, 2, 342, 4, 2, 2, 14, 14, 6, 2, 2, 6, 2, 4, 2, 1, 5, 10, 27, 6, 2, 2, 2, 14, 12, 16, 2, 48, 16, 6, 3, 2, 4, 2, 2, 1, 320, 4, 4, 8, 6, 238, 12, 6, 4, 10, 6, 2, 10, 4, 19, 10, 3, 1, 2, 32, 8, 4, 6, 2, 4, 2, 18, 10, 18, 4, 4, 4, 6, 2, 13, 2, 4, 47, 2, 2, 4, 10, 5, 4, 2, 12, 34, 4, 6, 8, 8, 8, 20, 2, 1, 4, 6, 2, 8, 29, 4, 14, 6, 8, 2, 28, 4, 18, 2, 2, 2, 7, 4, 2, 2, 8, 2, 6, 8, 1, 2, 6, 4, 1, 246, 6, 43, 14, 16, 2, 7, 4, 4, 12, 8, 8, 2, 14, 4, 19, 4, 2, 8, 16, 8, 14, 3, 12, 3, 4, 3, 4, 6, 2, 16, 5, 2, 3, 2, 11, 301, 10, 2, 2, 8, 1, 2, 4, 4, 4, 8, 2, 2, 4, 2, 8, 4, 6, 2, 34, 14, 25, 11, 2, 5, 34, 2, 1, 2, 2, 6, 2, 1, 6, 4, 4, 2, 5, 2, 2, 1, 25, 1, 21, 10, 14, 10, 4, 4, 6, 4, 4, 4, 28, 36, 2, 7, 2, 1, 5, 5, 2, 8, 23, 2, 104, 4, 2, 81, 5, 10, 4, 2, 20, 4, 4, 12, 4, 4, 7, 2, 2, 6, 1, 2, 4, 2, 16, 4, 2, 2, 32, 26, 2, 3, 5, 8, 34, 11, 2, 15, 4803, 6, 4, 2, 7, 2, 6, 54, 15, 5, 2, 10, 8, 6, 10, 2, 2, 4, 4, 4, 10, 6, 4, 7, 10, 12, 2, 2, 4, 10, 18, 2, 2, 4, 6, 4, 2, 10, 4, 2, 3, 4, 7, 5, 5, 10, 2, 24, 14, 2, 2, 14, 2, 4, 2, 5, 4, 4, 20, 2, 6, 8, 2, 4, 2, 14, 6, 2, 5, 2, 56, 4, 4, 4, 1, 4, 15, 22, 7, 4, 4, 6, 4, 12, 6, 2, 1, 8, 8, 6, 8, 4, 2, 2, 4, 16, 4, 16, 4, 11, 4, 16, 2, 4, 18, 10, 6, 4, 10, 5, 4, 4, 2, 1, 2, 6, 7, 2, 1, 12, 15, 6, 8, 3, 10, 6, 6, 15, 2, 2, 22, 2, 2, 4, 14, 4, 4, 2, 4, 4, 7, 2, 3, 4, 20, 4, 6, 6, 6, 6, 2, 2, 2, 40, 5, 57, 16, 9, 39, 23, 14, 4, 2, 4, 4, 1, 3, 2, 14, 18, 14, 4, 2, 4, 5], dtype=float)
d = np.array([85204, 52148, 51493, 49650, 71615, 40589, 64427, 82750, 106819, 74787, 85377, 103583, 105085, 182878, 62091, 57892, 50195, 93694, 109417, 73217, 55927, 72714, 63947, 55296, 90402, 88750, 65165, 45275, 96197, 25340, 21605, 35532, 47485, 26538, 24425, 23869, 26354, 22754, 21407, 55827, 21632, 22906, 28906, 24859, 21307, 30817, 17375, 9858, 18313, 232498, 19294, 97136, 51202, 37572, 54557, 70766, 57097, 114500, 56602, 45331, 40991, 39157, 38712, 55311, 31137, 97381, 34769, 27199, 26256, 54649, 55692, 20187, 29983, 38937, 18890, 27164, 40477, 26669, 17575, 29507, 24172, 32419, 20765, 22351, 47418, 32246, 30448, 19956, 12941, 14893, 13225, 35730, 19355, 25819, 54119, 110946, 65895, 87889, 39733, 83585, 64361, 59842, 38631, 58091, 48131, 103965, 93565, 79384, 45332, 95638, 95917, 36616, 48542, 33289, 41184, 24751, 30682, 43297, 24261, 32458, 30735, 25613, 26687, 44623, 21578, 26780, 27357, 24233, 43731, 65909, 39591, 46440, 34500, 63942, 37372, 110805, 100447, 36929, 90949, 82508, 50365, 60669, 85053, 99502, 31699, 43013, 33139, 20893, 25020, 21772, 19161, 19574, 25259, 21669, 29567, 25830, 28928, 39378, 18625, 35365, 20150, 28809, 20157, 12458, 18612, 18951, 36695, 30367, 27935, 17827, 38211, 47211, 32846, 50263, 33010, 64535, 38932, 64244, 47936, 65004, 93956, 121679, 135349, 92521, 57248, 60545, 96179, 61296, 82527, 129102, 57743, 27099, 27526, 77945, 47691, 72254, 30493, 31201, 30027, 18517, 51830, 45119, 34492, 19145, 28046, 39817, 32189, 26649, 22680, 35697, 20009, 27063, 22006, 17429, 21850, 36964, 22783, 29280, 17551, 16710, 21856, 56571, 29912, 78352, 47126, 119015, 58523, 53470, 117603, 113078, 90366, 152835, 84910, 44449, 48737, 90380, 36751, 21517, 61106, 43713, 31013, 32848, 35680, 34321, 28032, 28998, 21993, 17442, 25893, 35886, 18890, 21404, 21068, 31837, 24098, 22238, 22874, 79276, 59551, 56030, 51519, 56161, 69342, 44812, 75656, 147183, 101918, 117934, 101308, 48944, 72581, 83213, 39094, 45053, 41858, 93766, 24785, 44300, 32312, 44351, 46431, 22052, 22717, 30312, 17618, 18482, 32053, 30781, 23381, 25085, 38552, 17232, 7446, 31514, 31803, 52601, 59064, 57327, 83281, 52313, 102054, 81384, 46131, 41147, 92202, 83376, 71833, 81751, 50042, 139309, 88766, 65899, 73897, 13498, 24365, 54974, 55356, 55169, 70458, 34189, 22680, 30344, 29500, 29508, 20756, 23004, 28998, 19748, 24246, 45116, 19455, 45974, 34776, 28558, 52504, 100644, 36647, 34962, 62670, 86643, 72854, 149450, 144966, 64755, 160236, 107847, 169807, 45338, 118870, 59907, 54753, 95093, 53541, 40316, 41518, 30616, 62899, 24178, 32149, 31800, 16248, 26890, 23822, 24347, 21534, 32738, 34430, 26452, 22751, 24797, 32184, 21959, 14426, 21093, 22693, 35388, 38083, 20472, 96580, 48828, 41702, 80508, 59900, 69009, 150823, 50156, 124057, 79322, 99327, 37164, 48447, 73061, 23266, 60930, 32194, 27431, 48665, 23644, 23114, 19836, 20855, 26099, 18557, 34715, 69252, 35369, 24415, 27723, 75882, 80116, 93982, 93600, 48240, 30530, 70467, 48381, 68071, 111650, 49644, 48321, 67175, 36795, 38703, 45768, 25008, 101486, 118644, 28467, 27976, 40437, 35654, 36718, 37723, 27918, 21014, 39288, 36771, 35745, 59531, 15936, 18691, 13160, 22037, 20341, 26777, 33097, 21118, 10619, 51840, 37167, 37119, 17560, 95647, 49868, 102463, 43691, 58891, 117927, 59001, 55306, 60960, 62106, 37680, 71267, 69463, 103003, 39256, 57695, 36497, 32099, 42077, 29675, 39168, 22153, 65598, 45505, 27221, 24101, 35195, 25168, 21496, 20437, 27609, 22490, 31317, 23305, 20425, 14547, 32549, 37037, 19987, 49525, 81588, 74676, 88173, 63231, 124179, 88269, 66430, 48514, 63505, 52358, 45551, 32175, 16347, 47466, 49138, 32070, 19425, 39898, 25584, 29265, 28505, 36205], dtype=float)
n = len(r)

q, d, r, p = bd.burst_detection(r,d,n,s=2,gamma=1,smooth_win=1)
bursts = bd.enumerate_bursts(q, 'burstLabel')
weighted_bursts = bd.burst_weights(bursts,r,d,p)

print('observed probabilities: ')
print(str(r/d))

print('optimal state sequence: ')
print(str(q.T))

print('baseline probability: ' + str(p[0]))

print('bursty probability: ' + str(p[1]))

print('weighted bursts:')
print(weighted_bursts)

然后我尝试只将10或20个元素放到r和d,它可以工作。当它有524个元素时,它会显示这种错误。 有人知道为什么吗? 谢谢!

1 个答案:

答案 0 :(得分:1)

它似乎是burst_detection包中的错误。我不知道该行应该做什么,但行

q[t] = np.where(cost[t,:] == min(cost[t,:]))

将尝试将左侧q[t]设置为右侧,这是一个单个数组元素。当只有一个成本等于最低成本时,这种方法很好,但是当两个状态共享相同的最低成本时,右侧将具有长度2.要让它只选择其中一个最佳状态,您需要将该行更改为

q[t] = np.where(cost[t,:] == min(cost[t,:]))[0]

您可以通过转到安装软件包的任何位置并手动编辑该行来执行此操作。如果你认为软件包维护者会解决这个问题,你也可以在GitHub上的跟踪器上打开一个问题。