我有数据帧:df1
+------+--------+--------+--------+
| Name | value1 | value2 | value3 |
+------+--------+--------+--------+
| A | 100 | null | 200 |
| B | 10000 | 300 | 10 |
| c | null | 10 | 100 |
+------+--------+--------+--------+
第二个数据帧:df2:
+------+------+
| Col1 | col2 |
+------+------+
| X | 1000 |
| Y | 2002 |
| Z | 3000 |
+------+------+
我想读取table1中的值,如value1,value2和value3
使用新列将条件应用于table2:
cond1:当name = A且col2> value1时,将其标记为Y或N
cond2:当name = B且col2> value2然后是Y或N
cond3:当name = c且col2> value1和col2> value3,然后是Y或N
源代码:
df2.withColumn("cond1",when($"col2")>value1,lit("Y)).otherwise(lit("N"))
df2.withColumn("cond2",when($"col2")>value2,lit("Y)).otherwise(lit("N"))
df2.withColumn("cond3",when($"col2")>value1 && when($"col2")>value3,lit("Y")).otherwise(lit("N"))
输出:
+------+------+-------+-------+-------+
| Col1 | col2 | cond1 | cond2 | cond3 |
+------+------+-------+-------+-------+
| X | 1000 | Y | Y | y |
| Y | 2002 | N | Y | Y |
| Z | 3000 | Y | Y | Y |
+------+------+-------+-------+-------+
答案 0 :(得分:1)
如果我正确理解您的问题,您可以加入两个数据帧并创建条件列,如下所示。几个笔记:
1)根据描述的条件,df1中的null
被替换为Int.MinValue
以进行简化的整数比较
2)由于df1很小,broadcast
连接用于最小化排序/改组以获得更好的性能
val df1 = Seq(
("A", 100, Int.MinValue, 200),
("B", 10000, 300, 10),
("C", Int.MinValue, 10, 100)
).toDF("Name", "value1", "value2", "value3")
val df2 = Seq(
("A", 1000),
("B", 2002),
("C", 3000),
("A", 5000),
("A", 150),
("B", 250),
("B", 12000),
("C", 50)
).toDF("Col1", "col2")
val df3 = df2.join(broadcast(df1), df2("Col1") === df1("Name")).select(
df2("Col1"),
df2("col2"),
when(df2("col2") > df1("value1"), "Y").otherwise("N").as("cond1"),
when(df2("col2") > df1("value2"), "Y").otherwise("N").as("cond2"),
when(df2("col2") > df1("value1") && df2("col2") > df1("value3"), "Y").otherwise("N").as("cond3")
)
df3.show
+----+-----+-----+-----+-----+
|Col1| col2|cond1|cond2|cond3|
+----+-----+-----+-----+-----+
| A| 1000| Y| Y| Y|
| B| 2002| N| Y| N|
| C| 3000| Y| Y| Y|
| A| 5000| Y| Y| Y|
| A| 150| Y| Y| N|
| B| 250| N| N| N|
| B|12000| Y| Y| Y|
| C| 50| Y| Y| N|
+----+-----+-----+-----+-----+
答案 1 :(得分:0)
您可以在rowNo
中创建dataframes
列,如下所示
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions._
val tempdf1 = df1.withColumn("rowNo", row_number().over(Window.orderBy("Name")))
val tempdf2 = df2.withColumn("rowNo", row_number().over(Window.orderBy("Col1")))
然后您可以join
使用下面创建的列
val joinedDF = tempdf2.join(tempdf1, Seq("rowNo"), "left")
最后,您可以使用select
和when
函数来获取最终的数据框
joinedDF.select($"Col1",
$"col2",
when($"col2">$"value1" || $"value1".isNull, "Y").otherwise("N").as("cond1"),
when($"col2">$"value2" || $"value2".isNull, "Y").otherwise("N").as("cond2"),
when(($"col2">$"value1" && $"col2">$"value3") || $"value3".isNull, "Y").otherwise("N").as("cond3"))
您应该将所需的数据框设为
+----+----+-----+-----+-----+
|Col1|col2|cond1|cond2|cond3|
+----+----+-----+-----+-----+
|X |1000|Y |Y |Y |
|Y |2002|N |Y |Y |
|Z |3000|Y |Y |Y |
+----+----+-----+-----+-----+
我希望答案很有帮助