最简单的方法 - 使用R代码sample
功能,从每个10000 rnorm中取出500个观察值的10个随机样本。计算每个样本的平均值。然后计算样本均值的均值和样本均值的标准差。
答案 0 :(得分:1)
#take out 10 random samples of 500 observations from the 10000 rnorm each.
s0 <- sample(rnorm(10000),500)
s1 <- sample(rnorm(10000),500)
s2 <- sample(rnorm(10000),500)
s3 <- sample(rnorm(10000),500)
s4 <- sample(rnorm(10000),500)
s5 <- sample(rnorm(10000),500)
s6 <- sample(rnorm(10000),500)
s7 <- sample(rnorm(10000),500)
s8 <- sample(rnorm(10000),500)
s9 <- sample(rnorm(10000),500)
#Calculate the mean of each sample.
c(mean(s0),mean(s1), mean(s2), mean(s3),
mean(s4), mean(s5), mean(s6), mean(s7),
mean(s8), mean(s9))
[1] 0.028727024 -0.017773740 -0.022705430 -0.001933892 0.045273423 0.009788866 0.004833384 0.018486670 0.007363636 0.017806898
#Then calculate the mean of the sample means
mean(c(mean(s0),mean(s1), mean(s2), mean(s3),
mean(s4), mean(s5), mean(s6), mean(s7),
mean(s8), mean(s9))
)
[1] 0.008986684
# standard deviation
sd(c(mean(s0),mean(s1), mean(s2), mean(s3),
mean(s4), mean(s5), mean(s6), mean(s7),
mean(s8), mean(s9))
)
[1] 0.02037087
答案 1 :(得分:0)
使用replicate
重复sample/rnorm
来电。
set.seed(1435) # Make it reproducible
r <- replicate(10, sample(rnorm(1e4), 500))
(m <- colMeans(r))
#[1] 0.058202386 0.013195277 -0.031991121 0.026903820 -0.008564268
#[6] -0.017718631 0.001395289 0.032600240 -0.045317892 0.086021587
(M <- mean(m))
#[1] 0.01147267
(s <- sd(m))
#[1] 0.04068593