权重和偏差不在张量流中更新

时间:2017-09-17 12:34:26

标签: python machine-learning tensorflow neural-network tensorflow-gpu

我已经制作了这个神经网络,以确定一个房子是好买还是坏买。由于某些原因,代码不会更新权重和偏差。我的损失保持不变。这是我的代码:

我已经制作了这个神经网络,以确定一个房子是好买还是坏买。由于某些原因,代码不会更新权重和偏差。我的损失保持不变。这是我的代码:

import pandas as pd
import tensorflow as tf

data = pd.read_csv("E:/workspace_py/datasets/good_bad_buy.csv")

features = data.drop(['index', 'good buy'], axis = 1)
lbls = data.drop(['index', 'area', 'bathrooms', 'price', 'sq_price'], axis = 1)

features = features[0:20]
lbls = lbls[0:20]

print(features)
print(lbls)
n_examples = len(lbls)

# Model

# Hyper parameters

epochs = 100
learning_rate = 0.1
batch_size = 1

input_data = tf.placeholder('float', [None, 4])
labels = tf.placeholder('float', [None, 1])

weights = {
            'hl1': tf.Variable(tf.random_normal([4, 10])),
            'hl2': tf.Variable(tf.random_normal([10, 10])),
            'hl3': tf.Variable(tf.random_normal([10, 4])),
            'ol': tf.Variable(tf.random_normal([4, 1]))
            }

biases = {
            'hl1': tf.Variable(tf.random_normal([10])),
            'hl2': tf.Variable(tf.random_normal([10])),
            'hl3': tf.Variable(tf.random_normal([4])),
            'ol': tf.Variable(tf.random_normal([1]))
            }

hl1 = tf.nn.relu(tf.add(tf.matmul(input_data, weights['hl1']), biases['hl1']))
hl2 = tf.nn.relu(tf.add(tf.matmul(hl1, weights['hl2']), biases['hl2']))
hl3 = tf.nn.relu(tf.add(tf.matmul(hl2, weights['hl3']), biases['hl3']))
ol = tf.nn.sigmoid(tf.add(tf.matmul(hl3, weights['ol']), biases['ol']))

loss = tf.reduce_mean((labels - ol)**2)
train = tf.train.AdamOptimizer(learning_rate).minimize(loss)

sess = tf.Session()
sess.run(tf.global_variables_initializer())

iterations = int(n_examples/batch_size)


for epoch_no in range(epochs):
    ptr = 0
    for iteration_no in range(iterations):
        epoch_input = features[ptr:ptr+batch_size]
        epoch_label = lbls[ptr: ptr+batch_size]
        ptr = ptr + batch_size
        _, err = sess.run([train, loss], feed_dict={input_data: features, labels: lbls})
    print("Error at epoch ", epoch_no, ": ", err)

print(sess.run(ol, feed_dict={input_data: [[2104, 3, 399900, 190.0665]]}))

这是数据集:

Features:

    area  bathrooms   price    sq_price
0   2104          3  399900  190.066540
1   1600          3  329900  206.187500
2   2400          3  369000  153.750000
3   1416          2  232000  163.841808
4   3000          4  539900  179.966667
5   1985          4  299900  151.083123
6   1534          3  314900  205.280313
7   1427          3  198999  139.452698
8   1380          3  212000  153.623188
9   1494          3  242500  162.315930
10  1940          4  239999  123.710825
11  2000          3  347000  173.500000
12  1890          3  329999  174.602645
13  4478          5  699900  156.297454
14  1268          3  259900  204.968454
15  2300          4  449900  195.608696
16  1320          2  299900  227.196970
17  1236          3  199900  161.731392
18  2609          4  499998  191.643542
19  3031          4  599000  197.624546

labels:

    good buy
0        1.0
1        0.0
2        1.0
3        0.0
4        1.0
5        0.0
6        0.0
7        1.0
8        0.0
9        0.0
10       1.0
11       1.0
12       1.0
13       1.0
14       0.0
15       1.0
16       0.0
17       1.0
18       1.0
19       1.0

有关如何解决此问题的任何建议?除了tf.reduce_mean之外,我尝试过tf.reduce_sum。我还尝试了更大的batch_size。

3 个答案:

答案 0 :(得分:7)

您的代码有几件事情无法解决。 首先,你的意思是

    epoch_input = features[ptr:ptr+batch_size]
    epoch_label = lbls[ptr: ptr+batch_size]
    ptr = ptr + batch_size
    // _, err = sess.run([train, loss], feed_dict={input_data: features, labels: lbls}
    _, err = sess.run([train, loss], feed_dict={input_data: epoch_input, labels: epoch_label}

现在它使用了minibatch。

调试渐变:

您可以随时通过添加

来检查一些内容
loss = tf.Print(loss, [tf.reduce_sum(weights['hl1'])])

这将打印该列表[tf.reduce_sum(weights['hl1'])]的元素。要进一步调查您的问题,您可以检查渐变而不是使用最小化

grads = tf.reduce_sum(tf.gradients(loss, ol)[0])
sess.run(grads, {input_data: features, labels: lbls})

最后,损失函数是不合适的/数值不稳定的分类。有了你的版本,我得到:

variables
   Variable:0
   Variable_1:0
   Variable_2:0
   Variable_3:0
   Variable_4:0
   Variable_5:0
   Variable_6:0
   Variable_7:0
I tensorflow/core/kernels/logging_ops.cc:79] [-6.2784553]
-----------------------------------------
name MatMul_grad
gradient [[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]]
value [[-0.59977376 -0.30060738  0.55068201  0.15304407  1.39992142  0.07495346
  -0.87189424 -0.22595075 -0.30094525 -1.2688272 ]
 [-0.44018757  1.08651936 -0.26267499 -0.54463315  0.47019768  0.69873857
   0.56195319  0.20222363  0.38143152 -0.92212462]
 [-0.39977714 -1.07244122  0.41926911  1.4951371  -2.28751612  0.45676312
   0.88010246 -0.88077509 -1.25860023  0.56874037]
 [-0.98260719 -1.30747247 -1.4460088   1.0717535   0.08794415 -0.53184992
  -1.17537284 -0.51598179 -0.15323587  0.91142744]]
-----------------------------------------
name MatMul_1_grad
gradient [[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]]
value [[-0.1170694   0.12174897  0.91696155  0.59427398  0.90844423  0.29010534
  -0.34039831 -0.62824941  0.37833953  0.27777222]
 [-0.34947088  1.09264851  0.27353975  1.31722498 -0.42032316 -2.74952078
  -0.66349608 -0.61844724 -0.82141227  1.21691799]
 [ 0.10453336 -1.68631995  0.45700032 -1.58120835 -1.23378754 -0.05648948
  -1.64761281 -0.57684237 -0.06499017 -0.49623618]
 [ 1.47821534 -0.5329541   0.09209292  1.78089786  1.71149898  0.30547267
   0.39544162  1.00369155  1.0097307  -0.92320329]
 [ 1.27038908 -2.17246103 -0.31276336  0.8945803   0.30964327  1.15329361
   0.9711507  -0.36301252 -0.05652813  0.63399518]
 [-0.30909851 -0.41660413 -0.50603527  0.11735299 -0.26837045  0.16547598
  -0.33875859 -0.46821991  0.25723135 -0.80380815]
 [-0.86255074 -1.11751068  0.01365725  0.66119182  0.48947951  1.6353699
  -0.794447    0.43182942 -0.97692633 -1.62605619]
 [ 1.38552308  0.83679706 -0.87287223  2.59401655 -0.61855     0.38301265
   1.09983373  0.49209142  1.03003716 -1.33537853]
 [ 0.74452382  1.57940936 -0.90974236 -1.2211293  -1.1076287   0.92846316
  -0.46856263 -0.3179535   0.75120807 -0.86442506]
 [ 0.31622764 -0.35965034 -0.02351121 -0.0650174   0.4714573   0.35687482
   1.43354905  0.39608309  0.42744714 -0.37226421]]
-----------------------------------------
name MatMul_2_grad
gradient [[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
value [[-1.50904143  0.00228321  1.45787132  0.68312413]
 [-0.16627057  1.31303644  1.16326404  0.72901946]
 [ 0.8004092   0.37329885  0.89361066 -0.19850619]
 [ 1.58354807 -1.05612624  0.69891322 -0.32565734]
 [-1.57602286 -0.41256282  0.69086516 -0.54095054]
 [ 1.72376788 -0.53928965 -0.71574098 -0.94974124]
 [-0.62061429  1.51380932 -0.72585452 -0.07695383]
 [ 0.35537818  1.49691582  0.03931179  0.93435526]
 [ 0.20697887  1.39266443  0.73217523 -0.64737892]
 [ 1.00519872  0.90984046  1.68565321 -0.28157935]]
-----------------------------------------
name MatMul_3_grad
gradient [[ 0.]
 [ 0.]
 [ 0.]
 [ 0.]]
value [[ 0.94082022]
 [ 0.14753926]
 [-0.08765228]
 [ 1.32516992]]
-----------------------------------------
name Add_grad
gradient [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
value [ 1.71239722  1.12632215  0.75409448  0.01951236  0.32135537 -1.46281374
  0.40413955  0.54653352 -0.57894999  0.2746354 ]
-----------------------------------------
name Add_1_grad
gradient [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
value [ 0.74800217 -0.43517059 -0.77706921  1.46858656  1.09103405 -0.46681881
  0.6126743  -2.27877688  1.48809242 -1.19616997]
-----------------------------------------
name Add_2_grad
gradient [ 0.  0.  0.  0.]
value [-0.12137324 -0.23238407  0.17909229 -0.75496733]
-----------------------------------------
name Add_3_grad
gradient [ 0.]
value [-0.91176724]

如您所见,几乎所有渐变都为零。为什么呢?

  • 根据定义(labels - ol)在[0,1]
  • 平方值远小于一个
  • sigmoid s(x)的导数是s'(x) = s(x)*(1-s(x)),渐变乘以此值,该值再次小于1。

但是在使用数值稳定且在日志域中运行的sparse_softmax_cross_entropy_with_logits之后我得到了

variables
   Variable:0
   Variable_1:0
   Variable_2:0
   Variable_3:0
   Variable_4:0
   Variable_5:0
   Variable_6:0
   Variable_7:0
-----------------------------------------
name MatMul_grad
gradient [[ -1.42780918e-05  -1.96137808e-05  -2.44040220e-05  -2.25691911e-05
    0.00000000e+00   2.95208647e-05   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [ -2.54181440e-08  -3.49168410e-08  -4.34445262e-08  -4.01781257e-08
    0.00000000e+00   5.25536308e-08   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [ -2.45539122e-03  -3.37296468e-03  -4.19673882e-03  -3.88120394e-03
    0.00000000e+00   5.07667707e-03   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [ -1.42123906e-06  -1.95235293e-06  -2.42917258e-06  -2.24653377e-06
    0.00000000e+00   2.93850212e-06   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]]
value [[ 0.43133125 -0.40009859 -0.08456381  0.59587955  0.57171088 -0.9824872
   1.18876612  0.9704771   0.74798232  0.15660612]
 [-1.18380785  0.22617982 -1.15734088 -0.50478351  1.43819618  1.55950046
  -1.1510663  -0.88835335  0.58378232  0.56860197]
 [ 0.29826403  0.02192715  0.62225986  2.47716165 -0.9223454   1.70159853
  -1.03968358 -0.26019615 -0.33808291 -0.30873826]
 [ 0.59774327 -1.28855145 -0.43420359 -0.4413566  -0.19220066  0.96984953
  -0.04922202  0.32994318 -1.05539823 -0.80112725]]
-----------------------------------------
name MatMul_1_grad
gradient [[  0.00000000e+00   1.15650124e-03   0.00000000e+00   0.00000000e+00
    6.59449317e-04  -1.09400018e-03   0.00000000e+00  -4.02117817e-04
    5.44495881e-04  -8.90314346e-04]
 [  0.00000000e+00   7.24206184e-05   0.00000000e+00   0.00000000e+00
    4.12950030e-05  -6.85067716e-05   0.00000000e+00  -2.51807924e-05
    3.40965707e-05  -5.57518724e-05]
 [  0.00000000e+00   2.38713808e-03   0.00000000e+00   0.00000000e+00
    1.36117137e-03  -2.25812919e-03   0.00000000e+00  -8.30012548e-04
    1.12389564e-03  -1.83770037e-03]
 [  0.00000000e+00   9.52679198e-03   0.00000000e+00   0.00000000e+00
    5.43227792e-03  -9.01193265e-03   0.00000000e+00  -3.31248436e-03
    4.48533799e-03  -7.33405072e-03]
 [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [  0.00000000e+00   6.51591457e-03   0.00000000e+00   0.00000000e+00
    3.71544389e-03  -6.16377220e-03   0.00000000e+00  -2.26559630e-03
    3.06777749e-03  -5.01617463e-03]
 [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]
 [  0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00   0.00000000e+00   0.00000000e+00
    0.00000000e+00   0.00000000e+00]]
value [[ 0.38902158 -2.14370036 -1.02228141 -0.6492967   1.87193418 -0.06453216
   1.0013988  -1.26857054  0.59826601  0.45045251]
 [ 0.51465249 -1.09108925 -0.21368918 -0.49310678 -0.87893176 -0.07944249
  -0.15810326  1.65703297  1.01812947 -0.95572269]
 [-1.76351583 -1.46950841  1.43533802  2.15617752  1.30682683  0.77409673
  -1.50309181  0.81978178  0.6672287  -0.434971  ]
 [-0.7291944   2.16516733 -1.39850736 -1.06059277  0.40035763  1.23335707
  -0.03707252  1.88107574  0.09459961  2.11439633]
 [-1.39152992 -1.39924514 -0.35704514 -0.71152836 -2.68857026  0.78129828
  -1.0077033  -1.26149333  0.4403404  -0.10159389]
 [ 0.37354535  0.12654085  0.7632165  -0.76493222  0.68177891 -0.34254205
  -1.11582613  2.60665917  1.53196526 -0.867055  ]
 [ 0.62746197 -0.01072595  3.26629376  1.28371656 -0.88725293  3.55530715
   0.67065352 -0.61927503  1.20604384 -0.87207574]
 [-0.68954837  1.89912283  0.90083456  0.02054735 -0.23425011  0.39949065
  -0.08969283 -0.75943565  1.0924015   0.28920195]
 [-0.64865923 -1.29299021 -0.39945969  0.02289505  1.46024895  0.94282049
  -0.99704605 -1.36124468  0.76788425  0.86770487]
 [ 0.63794595  1.68530416 -0.15548207 -0.22658408 -0.45446202 -0.77308726
  -0.12694608  1.17369819  2.25879693  0.20346723]]
-----------------------------------------
name MatMul_2_grad
gradient [[ 0.          0.          0.          0.        ]
 [-0.02205572  0.          0.00960038  0.        ]
 [ 0.          0.          0.          0.        ]
 [ 0.          0.          0.          0.        ]
 [-0.01932034  0.          0.00840973  0.        ]
 [-0.01617817  0.          0.00704201  0.        ]
 [ 0.          0.          0.          0.        ]
 [-0.05091252  0.          0.02216113  0.        ]
 [-0.0189826   0.          0.00826272  0.        ]
 [-0.01993647  0.          0.00867792  0.        ]]
value [[-0.18724969 -0.0544498  -0.69153035  0.47535184]
 [-0.75444973 -1.33321464 -0.13066645  1.56889391]
 [-0.6458627   1.17859495 -0.75926393  0.30138403]
 [ 1.0069555  -0.69344127  0.49295315  0.54917085]
 [-0.55954564 -1.13277721 -0.37167427 -0.64837182]
 [ 0.93753678  1.12197697  0.63789612  0.52438796]
 [ 0.77543265 -1.241382    1.78230286 -0.6928125 ]
 [ 0.95383584 -2.00331807  1.63409865 -0.36474878]
 [-0.73891008  2.066082   -0.94303596 -0.42322466]
 [ 0.38519588  0.03278512 -0.3487882  -1.50447905]]
-----------------------------------------
name MatMul_3_grad
gradient [[ 0.08460998]
 [ 0.        ]
 [ 0.16564058]
 [ 0.        ]]
value [[-0.35376808]
 [-0.07330427]
 [ 0.15398768]
 [-0.06484076]]
-----------------------------------------
name Add_grad
gradient [ -8.22783885e-09  -1.13025616e-08  -1.40629695e-08  -1.30056375e-08
   0.00000000e+00   1.70115797e-08   0.00000000e+00   0.00000000e+00
   0.00000000e+00   0.00000000e+00]
value [-1.00038147 -0.56519473  0.59372097 -1.1646167  -0.16213787 -0.69313556
  0.62788707  1.03768504  0.57876503 -0.5201084 ]
-----------------------------------------
name Add_1_grad
gradient [  0.00000000e+00   1.28705375e-08   0.00000000e+00   0.00000000e+00
   7.33891703e-09  -1.21749730e-08   0.00000000e+00  -4.47511184e-09
   6.05961770e-09  -9.90818183e-09]
value [ 0.02854451 -1.46039021 -0.03916361  0.40116394  0.16030532  0.88267213
 -0.46328214  0.18927227 -1.7536788  -0.46590349]
-----------------------------------------
name Add_2_grad
gradient [ -1.84504412e-08   0.00000000e+00   8.03108247e-09   0.00000000e+00]
value [ 0.94534302 -0.9080081  -1.86719894 -1.31547296]
-----------------------------------------
name Add_3_grad
gradient [ 0.29727879 -0.29727876]
value [ 0.07999782 -0.75647992]

渐变是(虽然很小)这次非零。 再现的代码是

import numpy as np
import tensorflow as tf

features = [
[2104, 3, 399900, 190.066540],
[1600, 3, 329900, 206.187500],
[2400, 3, 369000, 153.750000],
[1416, 2, 232000, 163.841808],
[3000, 4, 539900, 179.966667],
[1985, 4, 299900, 151.083123],
[1534, 3, 314900, 205.280313],
[1427, 3, 198999, 139.452698],
[1380, 3, 212000, 153.623188],
[1494, 3, 242500, 162.315930],
[1940, 4, 239999, 123.710825],
[2000, 3, 347000, 173.500000],
[1890, 3, 329999, 174.602645],
[4478, 5, 699900, 156.297454],
[1268, 3, 259900, 204.968454],
[2300, 4, 449900, 195.608696],
[1320, 2, 299900, 227.196970],
[1236, 3, 199900, 161.731392],
[2609, 4, 499998, 191.643542],
[3031, 4, 599000, 197.624546]]

lbls = [1,0,1,0,1,0,0,1,0,0,1,1,1,1,0,1,0,1,1,1]
features = np.array(features, dtype=np.float32)
lbls = np.array(lbls, dtype=np.int32)

n_examples = len(lbls)
epochs = 100
learning_rate = 0.1
batch_size = 1

input_data = tf.placeholder('float', [None, 4])
labels = tf.placeholder('int32', [None])

weights = {
            'hl1': tf.Variable(tf.random_normal([4, 10])),
            'hl2': tf.Variable(tf.random_normal([10, 10])),
            'hl3': tf.Variable(tf.random_normal([10, 4])),
            'ol': tf.Variable(tf.random_normal([4, 1]))
            }

biases = {
            'hl1': tf.Variable(tf.random_normal([10])),
            'hl2': tf.Variable(tf.random_normal([10])),
            'hl3': tf.Variable(tf.random_normal([4])),
            # 'ol': tf.Variable(tf.random_normal([1])),
            'ol': tf.Variable(tf.random_normal([2]))
            }

hl1 = tf.nn.relu(tf.add(tf.matmul(input_data, weights['hl1']), biases['hl1']))
hl2 = tf.nn.relu(tf.add(tf.matmul(hl1, weights['hl2']), biases['hl2']))
hl3 = tf.nn.relu(tf.add(tf.matmul(hl2, weights['hl3']), biases['hl3']))
# ol = tf.nn.sigmoid(tf.add(tf.matmul(hl3, weights['ol']), biases['ol']))
logits = tf.add(tf.matmul(hl3, weights['ol']), biases['ol'])

# ol = tf.Print(ol, [tf.reduce_sum(weights['hl1'])])
# loss = tf.reduce_mean((labels - ol)**2)
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels)
# loss = tf.reduce_mean((labels - ol)**2)
loss = tf.reduce_mean(cost)
optimizer = tf.train.AdamOptimizer(learning_rate)

iterations = int(n_examples/batch_size)

def debug_minimize(optimizer, loss, sess):
    from tensorflow.python.ops import variables
    from tensorflow.python.framework import ops
    # get all varibles
    var_list = (variables.trainable_variables() + ops.get_collection(ops.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
    print 'variables'
    for v in var_list:
        print '  ', v.name
    # get all gradients
    grads_and_vars = optimizer.compute_gradients(loss)
    train_op = optimizer.apply_gradients(grads_and_vars)

    zipped_val = sess.run(grads_and_vars, {input_data: features, labels: lbls})

    for rsl, tensor in zip(zipped_val, grads_and_vars):
        print '-----------------------------------------'
        print 'name', tensor[0].name.replace('/tuple/control_dependency_1:0', '').replace('gradients/', '')
        print 'gradient', rsl[0]
        print 'value', rsl[1]
    return train_op

sess = tf.Session()
sess.run(tf.global_variables_initializer())
debug_minimize(optimizer, loss, sess)

答案 1 :(得分:4)

要考虑的一些事项

  • 由于您输入要素和lbl而不是epoch_input和epoch_label,因此未正确评估Minibatch。
  • 您不以任何方式预先处理您的数据,因此它完全超出范围。即我的代码在下面将功能标准化为stddev和mean。您可以考虑使用batch_normalization。
  • 您不会在任何时候评估错误。你需要一个训练和测试集。我的下面的代码没有提供数据,但它确实测试了错误%而不仅仅是丢失(这是错误的弱代理,所以你不应该把它称为错误)。
  • 您将偏差初始化为随机法线。你可能想要从零开始。
  • 您可能应该使用tf.layers或其他高级API。

以下代码达到了95%的训练误差。您希望使用未用于培训的保留数据集进行测试,以评估测试错误。

#!/usr/bin/env python
import sys
import pandas as pd
import numpy as np
import tensorflow as tf


data = pd.read_csv("data.csv")

features = data.drop(['good buy'], axis = 1)
lbls = data.drop([ 'area', 'bathrooms', 'price', 'sq_price'], axis = 1)

features = features[0:20]
lbls = lbls[0:20]

mu = np.mean(features, axis=0)
sigma = (np.std(features, axis=0))
features = (features - mu) / sigma

n_examples = len(lbls)

# Model

# Hyper parameters

epochs = 100
learning_rate = 0.01
batch_size = 5

input_data = tf.placeholder('float', [None, 4])
labels = tf.placeholder('float', [None, 1])

weights = {
      'hl1': tf.Variable(tf.random_normal([4, 10])),
      'hl2': tf.Variable(tf.random_normal([10, 10])),
      'hl3': tf.Variable(tf.random_normal([10, 4])),
      'ol': tf.Variable(tf.random_normal([4, 1]))
      }

biases = {
      'hl1': tf.Variable(tf.zeros([10])),
      'hl2': tf.Variable(tf.zeros([10])),
      'hl3': tf.Variable(tf.zeros([4])),
      'ol': tf.Variable(tf.zeros([1]))
      }



hl1 = tf.nn.relu(tf.add(tf.matmul(input_data, weights['hl1']), biases['hl1']))
hl2 = tf.nn.relu(tf.add(tf.matmul(hl1, weights['hl2']), biases['hl2']))
hl3 = tf.nn.relu(tf.add(tf.matmul(hl2, weights['hl3']), biases['hl3']))
ol = tf.nn.sigmoid(tf.add(tf.matmul(hl3, weights['ol']), biases['ol']))

loss = tf.reduce_mean((labels - ol)**2)
train = tf.train.AdamOptimizer(learning_rate).minimize(loss)

sess = tf.Session()
sess.run(tf.global_variables_initializer())

iterations = int(n_examples/batch_size)


def training_accuracy():
  foo,  = sess.run([ol], feed_dict={input_data: features, labels: lbls})
  return (float(np.count_nonzero(np.equal(np.round(foo), lbls))) / float(lbls.shape[0]))


print("Initial training accuracy %f" % training_accuracy())


for epoch_no in range(epochs):
  ptr = 0
  for iteration_no in range(iterations):
    epoch_input = features[ptr:ptr+batch_size]
    epoch_label = lbls[ptr: ptr+batch_size]
    ptr = (ptr + batch_size)%len(features)
    _, err = sess.run([train, loss], feed_dict={input_data: epoch_input, labels: epoch_label})
  print("Error at epoch ", epoch_no, ": ", err)
  print("  Training accuracy %f" % training_accuracy())

另外,请不要在github上发布这样的使用问题,它们属于StackOverflow。

答案 2 :(得分:0)

我不确定这对你来说是不是问题。但是,如果sigmoid函数的输入很大,它可以变得非常小,这可能会使更新变得非常慢。

要检查是否是这种情况,请尝试以非常小的值初始化所有权重。您可以通过为随机规范设置标准偏差来调整此值。

tf.Variable(tf.random_normal([4, 10],  stddev=0.1))