我在R中进行模拟,需要一段时间才能运行。现在,此模拟仅返回原始输出。我还在开发一个函数,它可以独立于模拟本身操作和汇总这个原始输出。
现在,当我开始R的新会话时(有时我需要重新启动计算机),我必须从模拟中创建新输出,以便继续处理我的单独汇总功能。我想知道是否有一种方法可以导出我的模拟输出,这样我每次开始新的R会话时都可以引用它?
我熟悉write.csv
,但我只将其用于单个dfs或矩阵。我的模拟输出是由数据帧组成的列表。我试过谷歌搜索,但我不知道如何导出这个输出列表,以便我可以简单地将其读入R以备将来使用。
以下是我的模拟输出的示例:
$`1_1`
$`1_1`[[1]]
mean sd MC_error val2.5pc median val97.5pc start sample
RR[1] 0.7019 0.2361 0.004283 0.3238 0.6754 1.2360 1001 4000
RR[2] 0.8272 0.2573 0.004271 0.4072 0.7981 1.3980 1001 4000
RR[3] 2.1340 0.6723 0.012830 1.0910 2.0320 3.7000 1001 4000
RR[4] 0.9561 0.2975 0.005175 0.4807 0.9185 1.6460 1001 4000
RR[5] 1.0240 0.3072 0.005411 0.5300 0.9912 1.7080 1001 4000
RR[6] 1.5390 0.4806 0.008306 0.7824 1.4810 2.6890 1001 4000
RR[7] 0.9261 0.2895 0.004738 0.4531 0.8941 1.5750 1001 4000
RR[8] 2.0830 0.5898 0.011580 1.1190 2.0080 3.4470 1001 4000
RR[9] 0.9283 0.2938 0.004105 0.4571 0.8954 1.6020 1001 4000
RR[10] 0.8101 0.2621 0.004615 0.3779 0.7842 1.3950 1001 4000
RR[11] 0.6641 0.2096 0.003801 0.3161 0.6428 1.1400 1001 4000
RR[12] 1.2790 0.3620 0.005807 0.6876 1.2410 2.1130 1001 4000
RR[13] 1.5350 0.5261 0.008755 0.7415 1.4590 2.7700 1001 4000
RR[14] 3.0160 1.1210 0.025830 1.3570 2.8270 5.6150 1001 4000
RR[15] 1.3960 0.4376 0.006281 0.6850 1.3500 2.3730 1001 4000
RR[16] 0.8216 0.2668 0.004341 0.3825 0.7924 1.4260 1001 4000
RR[17] 1.1150 0.3155 0.004257 0.5949 1.0820 1.8100 1001 4000
RR[18] 1.0240 0.3180 0.005216 0.5246 0.9866 1.7470 1001 4000
RR[19] 1.3870 0.3618 0.005552 0.7793 1.3550 2.1780 1001 4000
RR[20] 1.0360 0.3169 0.005407 0.5292 1.0020 1.7410 1001 4000
RR[21] 1.1380 0.3255 0.004510 0.6100 1.1060 1.8590 1001 4000
RR[22] 1.2520 0.3837 0.005944 0.6375 1.2030 2.1350 1001 4000
RR[23] 1.0130 0.2606 0.004266 0.5661 0.9903 1.5970 1001 4000
RR[24] 0.9086 0.2891 0.004517 0.4366 0.8716 1.5670 1001 4000
RR[25] 1.3420 0.3837 0.006165 0.7141 1.3040 2.2070 1001 4000
RR[26] 0.9877 0.2872 0.004642 0.5139 0.9541 1.6260 1001 4000
RR[27] 0.9767 0.2295 0.003219 0.5909 0.9524 1.4800 1001 4000
RR[28] 0.6554 0.1892 0.003494 0.3407 0.6351 1.0690 1001 4000
RR[29] 1.1270 0.3399 0.004825 0.5813 1.0850 1.9360 1001 4000
RR[30] 1.1600 0.2785 0.004405 0.6970 1.1360 1.7730 1001 4000
RR[31] 1.1620 0.3096 0.004316 0.6481 1.1320 1.8790 1001 4000
RR[32] 0.9623 0.3105 0.004872 0.4758 0.9279 1.6850 1001 4000
RR[33] 1.0850 0.3242 0.005618 0.5678 1.0480 1.8170 1001 4000
RR[34] 1.1970 0.3093 0.004674 0.6799 1.1730 1.8770 1001 4000
RR[35] 0.9759 0.2696 0.003909 0.5325 0.9473 1.5920 1001 4000
RR[36] 1.0150 0.2836 0.004981 0.5353 0.9851 1.6600 1001 4000
RR[37] 0.5347 0.1565 0.003182 0.2735 0.5193 0.8818 1001 4000
RR[38] 0.4884 0.1536 0.003391 0.2371 0.4724 0.8368 1001 4000
RR[39] 0.6822 0.1711 0.002677 0.3878 0.6670 1.0590 1001 4000
RR[40] 0.9158 0.2704 0.003893 0.4786 0.8891 1.5380 1001 4000
RR[41] 1.5450 0.4564 0.006619 0.8101 1.4900 2.5720 1001 4000
RR[42] 0.9248 0.2964 0.004344 0.4559 0.8896 1.6150 1001 4000
RR[43] 0.5465 0.1764 0.003420 0.2596 0.5322 0.9464 1001 4000
RR[44] 0.9240 0.2930 0.004803 0.4516 0.8893 1.5960 1001 4000
$`1_1`[[2]]
mean sd MC_error val2.5pc median val97.5pc start sample
RR[1] 0.8063 0.2904 0.004716 0.3603 0.7689 1.4900 1001 4000
RR[2] 0.5037 0.2004 0.003569 0.1930 0.4809 0.9754 1001 4000
RR[3] 1.9320 0.6532 0.011190 0.8829 1.8500 3.4980 1001 4000
RR[4] 1.0250 0.3362 0.006026 0.4891 0.9846 1.7930 1001 4000
RR[5] 0.5143 0.2125 0.004398 0.1936 0.4836 1.0200 1001 4000
RR[6] 1.6060 0.5191 0.008263 0.7718 1.5490 2.7840 1001 4000
RR[7] 0.7761 0.2914 0.004174 0.3291 0.7373 1.4710 1001 4000
RR[8] 1.2780 0.4432 0.006818 0.5752 1.2210 2.3230 1001 4000
RR[9] 0.7724 0.2846 0.004568 0.3221 0.7460 1.4220 1001 4000
RR[10] 0.9518 0.3186 0.004953 0.4447 0.9199 1.6910 1001 4000
RR[11] 0.4497 0.1785 0.003439 0.1721 0.4268 0.8686 1001 4000
RR[12] 0.6595 0.2587 0.004312 0.2661 0.6256 1.2830 1001 4000
RR[13] 1.2280 0.5014 0.008534 0.4827 1.1470 2.4020 1001 4000
RR[14] 3.2500 1.2120 0.022290 1.3560 3.0580 6.1720 1001 4000
RR[15] 1.4540 0.4913 0.008027 0.6922 1.3820 2.5760 1001 4000
RR[16] 0.8626 0.3058 0.004241 0.3898 0.8212 1.5680 1001 4000
RR[17] 1.2030 0.3592 0.006269 0.6188 1.1670 2.0110 1001 4000
RR[18] 1.4940 0.4459 0.007102 0.7733 1.4400 2.5210 1001 4000
RR[19] 0.9936 0.3191 0.004616 0.4789 0.9538 1.7250 1001 4000
RR[20] 0.5828 0.2432 0.004339 0.2096 0.5501 1.1560 1001 4000
RR[21] 0.9172 0.3047 0.005035 0.4227 0.8818 1.6240 1001 4000
RR[22] 0.6529 0.2804 0.004139 0.2383 0.6096 1.3180 1001 4000
RR[23] 0.9142 0.2679 0.004130 0.4583 0.8893 1.5010 1001 4000
RR[24] 0.9641 0.3227 0.005514 0.4446 0.9264 1.7310 1001 4000
RR[25] 1.3690 0.4135 0.007314 0.6912 1.3190 2.2920 1001 4000
RR[26] 0.6732 0.2451 0.004072 0.2900 0.6404 1.2420 1001 4000
RR[27] 0.6030 0.1840 0.003017 0.2999 0.5827 1.0140 1001 4000
RR[28] 0.6519 0.2004 0.003232 0.3208 0.6310 1.0930 1001 4000
RR[29] 0.6803 0.2744 0.004725 0.2670 0.6403 1.3360 1001 4000
RR[30] 0.5276 0.1847 0.003239 0.2281 0.5076 0.9603 1001 4000
RR[31] 0.9763 0.3013 0.004561 0.4949 0.9466 1.6600 1001 4000
RR[32] 0.5934 0.2481 0.004518 0.2248 0.5596 1.1930 1001 4000
RR[33] 0.6487 0.2554 0.003746 0.2561 0.6084 1.2370 1001 4000
RR[34] 0.6916 0.2441 0.004238 0.3093 0.6602 1.2660 1001 4000
RR[35] 0.5388 0.2026 0.003581 0.2221 0.5105 1.0070 1001 4000
RR[36] 1.2720 0.3578 0.005380 0.6866 1.2370 2.0640 1001 4000
RR[37] 0.6141 0.1802 0.002972 0.3166 0.5950 1.0170 1001 4000
RR[38] 0.4088 0.1441 0.002842 0.1808 0.3901 0.7413 1001 4000
RR[39] 0.4162 0.1381 0.002273 0.1924 0.4022 0.7266 1001 4000
RR[40] 0.7893 0.2603 0.004345 0.3673 0.7597 1.3960 1001 4000
RR[41] 1.0440 0.3824 0.005550 0.4523 0.9927 1.9340 1001 4000
RR[42] 0.8632 0.3058 0.004773 0.3853 0.8158 1.5570 1001 4000
RR[43] 0.6449 0.2061 0.002788 0.3070 0.6185 1.1090 1001 4000
RR[44] 1.2230 0.3901 0.006244 0.5960 1.1840 2.1050 1001 4000
$`1_2a`
$`1_2a`[[1]]
mean sd MC_error val2.5pc median val97.5pc start sample
RR[1] 0.7409 0.2534 0.005284 0.3335 0.7159 1.3110 1001 4000
RR[2] 0.8294 0.2733 0.004385 0.3956 0.7962 1.4380 1001 4000
RR[3] 2.2790 0.6923 0.013190 1.1700 2.1990 3.8670 1001 4000
RR[4] 0.9933 0.3063 0.004733 0.4860 0.9608 1.6850 1001 4000
RR[5] 1.0880 0.3294 0.005059 0.5551 1.0460 1.8220 1001 4000
RR[6] 1.6260 0.4889 0.008983 0.8362 1.5620 2.7240 1001 4000
RR[7] 0.9308 0.3019 0.004657 0.4370 0.8980 1.6140 1001 4000
RR[8] 2.2260 0.6097 0.012630 1.2230 2.1620 3.5900 1001 4000
RR[9] 0.9662 0.3192 0.005141 0.4570 0.9251 1.7050 1001 4000
RR[10] 0.7817 0.2662 0.004268 0.3584 0.7484 1.3850 1001 4000
RR[11] 0.7007 0.2304 0.004228 0.3317 0.6711 1.2260 1001 4000
RR[12] 1.3510 0.3861 0.006772 0.7165 1.3100 2.2540 1001 4000
RR[13] 1.5120 0.5524 0.009909 0.6730 1.4340 2.8100 1001 4000
RR[14] 3.1230 1.1810 0.030370 1.3740 2.9390 5.9480 1001 4000
RR[15] 1.4980 0.4633 0.008328 0.7570 1.4390 2.5650 1001 4000
RR[16] 0.8205 0.2727 0.004188 0.3815 0.7903 1.4580 1001 4000
RR[17] 1.1660 0.3386 0.006009 0.6054 1.1320 1.9280 1001 4000
RR[18] 1.0840 0.3464 0.006399 0.5181 1.0400 1.8780 1001 4000
etc.....
基本上,我只想保留输出的列表结构。
答案 0 :(得分:3)
选项1: 您可以保存整个工作区(例如,保存当前在R中的所有变量)。你这样做:
save.image("<file_name>.RData")
然后,当您重新打开R时,您将运行:
load("<file_name>.RData")
或者,在RStudio中,转到会话,您将看到保存和加载工作目录的选项。
如果你只想保存一个对象,你可以这样做:
选项2 :使用save(<R object>, file="<file_name>.RData")
保存单个对象,然后使用load("<file_name>.RData")
重新加载。
您还可以使用saveRDS(<R object>, file="<file_name>.RData")
和readRDS("<file_name>.RData")
。与save
和load
相比,此方法允许您在将变量读回R后重命名该变量。
答案 1 :(得分:3)
使用RDS
格式。
saveRDS(yourList, "yourFile.RDS")
我建议不要使用.Rdata
,因为它已经过折旧且难以操作。 RDS可用于快速保存/加载大型对象。为此,您必须使用compress
参数。
saveRDS(yourList, "yourFile.RDS", compress = FALSE)
yourList <- readRDS("yourFile.RDS")