我有以下数据框:
col1 <- c("avi","chi","chi","bov","fox","bov","fox","avi","bov",
"chi","avi","chi","chi","bov","bov","fox","avi","bov","chi")
col2 <- c("low","med","high","high","low","low","med","med","med","high",
"low","low","high","high","med","med","low","low","med")
col3 <- c(0,1,1,1,0,1,0,0,0,0,0,0,1,1,1,1,0,1,0)
test_data <- cbind(col1, col2, col3)
test_data <- as.data.frame(test_data)
我想最终得到类似这个表的东西(值是随机的):
Species Pop.density %Resistance CI_low CI_high Total samples
avi low 2.0 1.2 2.2 30
avi med 0 0 0.5 20
avi high 3.5 2.9 4.2 10
chi low 0.5 0.3 0.7 20
chi med 2.0 1.9 2.1 150
chi high 6.5 6.2 6.6 175
%电阻列基于上面的col3,其中1 =抗性,0 =非抗性。我尝试过以下方法:
library(dplyr)
test_data<-test_data %>%
count(col1,col2,col3) %>%
group_by(col1, col2) %>%
mutate(perc_res = prop.table(n)*100)
我尝试了这个,它几乎可以解决这个问题,因为我得到col3中的总1和0的百分比,对于col1和2中的每个值,但总样本是错误的,因为我计算所有三列,当正确的计数仅为col1和2时。
对于置信区间,我将使用以下内容:
binom.test(resistant samples,total samples)$conf.int*100
但是我不知道如何与其他人一起实施。 有一种简单快捷的方法吗?
答案 0 :(得分:6)
我会......
library(data.table)
setDT(DT)
DT[, {
bt <- binom.test(sum(resists), .N)$conf.int*100
.(res_rate = mean(resists)*100, res_lo = bt[1], res_hi = bt[2], n = .N)
}, keyby=.(species, popdens)]
species popdens res_rate res_lo res_hi n
1: avi low 0.00000 0.000000 70.75982 3
2: avi med 0.00000 0.000000 97.50000 1
3: bov low 100.00000 15.811388 100.00000 2
4: bov med 50.00000 1.257912 98.74209 2
5: bov high 100.00000 15.811388 100.00000 2
6: chi low 0.00000 0.000000 97.50000 1
7: chi med 50.00000 1.257912 98.74209 2
8: chi high 66.66667 9.429932 99.15962 3
9: fox low 0.00000 0.000000 97.50000 1
10: fox med 50.00000 1.257912 98.74209 2
包括所有级别(物种和人口密度的组合)......
DT[CJ(species = species, popdens = popdens, unique = TRUE), on=.(species, popdens), {
bt <-
if (.N > 0L) binom.test(sum(resists), .N)$conf.int*100
else NA_real_
.(res_rate = mean(resists)*100, res_lo = bt[1], res_hi = bt[2], n = .N)
}, by=.EACHI]
species popdens res_rate res_lo res_hi n
1: avi low 0.00000 0.000000 70.75982 3
2: avi med 0.00000 0.000000 97.50000 1
3: avi high NA NA NA 0
4: bov low 100.00000 15.811388 100.00000 2
5: bov med 50.00000 1.257912 98.74209 2
6: bov high 100.00000 15.811388 100.00000 2
7: chi low 0.00000 0.000000 97.50000 1
8: chi med 50.00000 1.257912 98.74209 2
9: chi high 66.66667 9.429932 99.15962 3
10: fox low 0.00000 0.000000 97.50000 1
11: fox med 50.00000 1.257912 98.74209 2
12: fox high NA NA NA 0
工作原理
语法为DT[i, j, by=]
其中......
i
确定行的子集,有时使用辅助参数on=
或roll=
。by=
确定子集表中的组,如果排序则切换为keyby=
。j
是代表每个群组的代码。 j
应评估为列表,.()
是list()
的快捷方式。有关详细信息,请参阅?data.table
。
使用的数据
(重命名列,重新格式化二进制变量回到0/1或false / true,按正确顺序设置人口密度级别):
DT = data.frame(
species = col1,
popdens = factor(col2, levels=c("low", "med", "high")),
resists = col3
)
答案 1 :(得分:3)
应该这样做。
library(tidyverse)
library(broom)
test_data %>%
mutate(col3 = ifelse(col3 == 0, "NonResistant", "Resistant")) %>%
count(col1, col2, col3) %>%
spread(col3, n, fill = 0) %>%
mutate(PercentResistant = Resistant / (NonResistant + Resistant)) %>%
mutate(test = map2(Resistant, NonResistant, ~ binom.test(.x, .x + .y) %>% tidy())) %>%
unnest() %>%
transmute(Species = col1, Pop.density = col2, PercentResistant, CI_low = conf.low * 100, CI_high = conf.high * 100, TotalSamples = Resistant + NonResistant)