我目前正在使用CNTK重新实现我的TensorFlow Jonathan Longs FCN8-s实现。虽然TensorFlow对我来说非常熟悉,但我还缺乏使用微软CNTK的经验。我阅读了一些CNTK Github教程,但现在我想要用upscore层添加pool4_score。在TensorFlow中,我只使用tf.add(pool4_score, upscore1)
但在CNTK中我必须使用Sequentials(正确吗?)所以我的代码看起来像:
with default_options(activation=None, pad=True, bias=True):
z = Sequential([
For(range(2), lambda i: [
Convolution2D((3,3), 64, pad=True, name='conv1_{}'.format(i)),
Activation(activation=relu, name='relu1_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool1'),
For(range(2), lambda i: [
Convolution2D((3,3), 128, pad=True, name='conv2_{}'.format(i)),
Activation(activation=relu, name='relu2_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool2'),
For(range(3), lambda i: [
Convolution2D((3,3), 256, pad=True, name='conv3_{}'.format(i)),
Activation(activation=relu, name='relu3_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool3'),
For(range(3), lambda i: [
Convolution2D((3,3), 512, pad=True, name='conv4_{}'.format(i)),
Activation(activation=relu, name='relu4_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool4'),
For(range(3), lambda i: [
Convolution2D((3,3), 512, pad=True, name='conv5_{}'.format(i)),
Activation(activation=relu, name='relu5_{}'.format(i)),
]),
MaxPooling((2,2), (2,2), name='pool5'),
Convolution2D((7,7), 4096, pad=True, name='fc6'),
Activation(activation=relu, name='relu6'),
Dropout(0.5, name='drop6'),
Convolution2D((1,1), 4096, pad=True, name='fc7'),
Activation(activation=relu, name='relu7'),
Dropout(0.5, name='drop7'),
Convolution2D((1,1), num_classes, pad=True, name='fc8')
ConvolutionTranspose2D((4,4), num_classes, strides=(1,2), name='upscore1')
# TODO:
# conv for pool4_score with (1x512) and 21 classes
# combine upscore 1 and pool4_score
])(input)
我读到有combine
方法..但我没有找到如何在顺序中使用它的示例。那么我如何使用CNTK实现tf.add
方法?
非常感谢!
答案 0 :(得分:2)
您可以使用C.plus或library(tidyverse)
df %>%
nest(start, end) %>%
mutate(data = map(data, ~seq(unique(.x$start), unique(.x$end), 1))) %>%
unnest(data)
# # A tibble: 365 x 2
# idnum data
# <int> <date>
# 1 17 1993-01-01
# 2 17 1993-01-02
# 3 17 1993-01-03
# 4 17 1993-01-04
# 5 17 1993-01-05
# 6 17 1993-01-06
# 7 17 1993-01-07
# 8 17 1993-01-08
# 9 17 1993-01-09
# 10 17 1993-01-10
# # ... with 355 more rows
,在这种情况下,您需要拆分序列才能到达要添加的图层。
例如以下内容:
+
相当于:
z = Sequential([Convolution2D((3,3), 64, pad=True),
MaxPooling((2,2), (2,2))])(input)
你现在可以做z1 + z2。