我尝试根据另一个类似数据框中的列对pandas
数据框进行子集化。我可以在R:
df1 <- data.frame(A=1:5, B=6:10, C=11:15)
df2 <- data.frame(A=1:5, B=6:10)
#Select columns in df1 that exist in df2
df1[df1 %in% df2]
A B
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10
#Select columns in df1 that do not exist in df2
df1[!(df1 %in% df2)]
C
1 11
2 12
3 13
4 14
5 15
如何使用下面的pandas
数据框执行此操作?
df1 = pd.DataFrame({'A': [1,2,3,4,5],'B': [6,7,8,9,10],'C': [11,12,13,14,15]})
df2 = pd.DataFrame({'A': [1,2,3,4,5],'B': [6,7,8,9,10],})
答案 0 :(得分:5)
In [77]: df1[df1.columns.intersection(df2.columns)]
Out[77]:
A B
0 1 6
1 2 7
2 3 8
3 4 9
4 5 10
In [78]: df1[df1.columns.difference(df2.columns)]
Out[78]:
C
0 11
1 12
2 13
3 14
4 15
或类似,但不明显:
In [92]: df1[list(set(df1) & set(df2))]
Out[92]:
B A
0 6 1
1 7 2
2 8 3
3 9 4
4 10 5
In [93]: df1[list(set(df1) - set(df2))]
Out[93]:
C
0 11
1 12
2 13
3 14
4 15
答案 1 :(得分:2)
使用isin
,dropna
:
df1[df1.isin(df2)].dropna(1)
A B
0 1 6
1 2 7
2 3 8
3 4 9
4 5 10
df1[~df1.isin(df2)].dropna(1)
C
0 11
1 12
2 13
3 14
4 15