AWS Glue to Redshift:是否可以替换,更新或删除数据?

时间:2017-09-14 21:08:52

标签: amazon-web-services jdbc pyspark aws-glue

以下是关于如何设置内容的一些要点:

  • 我将CSV文件上传到S3,并使用Glue抓取工具设置来创建表格和架构。
  • 我有一个Glue作业设置,它使用JDBC连接将数据从Glue表写入我们的Amazon Redshift数据库。 Job还负责映射列并创建redshift表。

通过重新运行作业,我在redshift中获得了重复的行(正如预期的那样)。但是,有没有办法在插入新数据之前替换或删除行,使用密钥或胶水中的分区设置?

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

from awsglue.dynamicframe import DynamicFrame
from awsglue.transforms import SelectFields

from pyspark.sql.functions import lit

## @params: [TempDir, JOB_NAME]
args = getResolvedOptions(sys.argv, ['TempDir','JOB_NAME'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

columnMapping = [
    ("id", "int", "id", "int"),
    ("name", "string", "name", "string"),
]

datasource1 = glueContext.create_dynamic_frame.from_catalog(database = "db01", table_name = "table01", transformation_ctx = "datasource0")

applymapping1 = ApplyMapping.apply(frame = datasource1, mappings = columnMapping, transformation_ctx = "applymapping1")
resolvechoice1 = ResolveChoice.apply(frame = applymapping1, choice = "make_cols", transformation_ctx = "resolvechoice1")
dropnullfields1 = DropNullFields.apply(frame = resolvechoice1, transformation_ctx = "dropnullfields1")
df1 = dropnullfields1.toDF()
data1 = df1.withColumn('platform', lit('test'))
data1 = DynamicFrame.fromDF(data1, glueContext, "data_tmp1")

## Write data to redshift
datasink1 = glueContext.write_dynamic_frame.from_jdbc_conf(frame = data1, catalog_connection = "Test Connection", connection_options = {"dbtable": "table01", "database": "db01"}, redshift_tmp_dir = args["TempDir"], transformation_ctx = "datasink1")

job.commit()

6 个答案:

答案 0 :(得分:12)

工作书签是关键。只需编辑作业并启用"作业书签"它不会处理已处理的数据。 请注意,作业必须重新运行一次才能检测到它不必再次重新处理旧数据。

有关详细信息,请参阅: http://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html

名称"书签"在我看来有点牵强。如果我在搜索期间没有巧合地偶然发现它,我将永远不会看到它。

答案 1 :(得分:4)

这是我从AWS Glue Support获得的解决方案:

您可能知道,虽然您可以创建主键,但Redshift不会强制实现唯一性。因此,如果您正在重新运行Glue作业,则可以插入重复的行。保持唯一性的一些方法是:

  1. 使用临时表插入所有行,然后在主表中执行upsert / merge [1],这必须在胶水之外完成。

  2. 在redshift表[1]中添加另一列,如插入时间戳,以允许重复,但要知道哪一个是第一个或最后一个,然后在需要时删除副本。

    < / LI>
  3. 将先前插入的数据加载到数据框中,然后比较要插入的数据以避免插入重复项[3]

  4. [1] - http://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-upsert.htmlhttp://www.silota.com/blog/amazon-redshift-upsert-support-staging-table-replace-rows/

    [2] - https://github.com/databricks/spark-redshift/issues/238

    [3] - https://docs.databricks.com/spark/latest/faq/join-two-dataframes-duplicated-column.html

答案 2 :(得分:2)

今天,我已经测试并找到了一种解决方法,可以使用JDBC连接从目标表中进行更新/删除。

我使用了以下

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

import pg8000
args = getResolvedOptions(sys.argv, [
    'JOB_NAME',
    'PW',
    'HOST',
    'USER',
    'DB'
])
# ...
# Create Spark & Glue context

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

# ...
config_port = ****
conn = pg8000.connect(
    database=args['DB'], 
    user=args['USER'], 
    password=args['PW'],
    host=args['HOST'],
    port=config_port
)
query = "UPDATE table .....;"

cur = conn.cursor()
cur.execute(query)
conn.commit()
cur.close()



query1 = "DELETE  AAA FROM  AAA A, BBB B WHERE  A.id = B.id"

cur1 = conn.cursor()
cur1.execute(query1)
conn.commit()
cur1.close()
conn.close()

答案 3 :(得分:0)

Glue中的作业书签选项应该可以解决问题,如上所述。当我的源码是S3时,我一直在成功使用它。 http://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html

答案 4 :(得分:0)

根据我的测试(在相同的情况下),BOOKMARK功能不起作用。多次运行作业时,将插入重复的数据。通过每天(通过lambda)从S3位置删除文件并实现暂存和目标表,可以解决此问题。数据将根据匹配的键列进行插入/更新。

答案 5 :(得分:0)

请检查this答案。有说明和代码示例如何使用登台表将数据上载到Redshift中。在Glue使用preactionspostactions选项写入数据之前或之后,可以使用相同的方法来运行任何SQL查询:

// Write data to staging table in Redshift
glueContext.getJDBCSink(
  catalogConnection = "redshift-glue-connections-test",
  options = JsonOptions(Map(
    "database" -> "conndb",
    "dbtable" -> staging,
    "overwrite" -> "true",
    "preactions" -> "<another SQL queries>",
    "postactions" -> "<some SQL queries>"
  )),
  redshiftTmpDir = tempDir,
  transformationContext = "redshift-output"
).writeDynamicFrame(datasetDf)