如何在pyspark中从单行添加多行和多列?

时间:2017-09-14 14:45:11

标签: python apache-spark pyspark spark-dataframe

我是Spark的新手,我有一个需要从单行生成多个行和列的要求。

输入:

col1   col2  col3  col4

输出

col1 col2   col3  col4 col5 col6 col7 

col1 col2   col3  col4 col8 col9 col10

Logics for new columns:

**col5 :**

if col1==0 and col3!=0:
   col5 = col4/col3

else: 
   col5 = 0


**col6 :**

if col1==0 and col4!=0:
   col6 = (col3*col4)/col1

else: 
   col6 = 0

For first row col7 holds same value as col2

**col8 :**

if col1!=0 and col3!=0:
   col8 = col4/col3

else: 
   col8 = 0
**col9 :**

if col1!=0 and col4!=0:
   col9 = (col3*col4)/col1

else: 
   col9 = 0

For second row col10 = col2+ "_NEW"

最后'总结'功能需要与group by一起应用。希望一旦我们转换上述结构就会很容易。

谷歌的大部分文章都解释了如何使用" withcolumn"将单列添加到现有数据框中。选项不是多列。这篇文章都没有解释过这个场景。所以我想请你的帮助。

2 个答案:

答案 0 :(得分:2)

希望这有帮助!

from pyspark.sql.functions import col, when, lit, concat, round, sum

#sample data
df = sc.parallelize([(1, 2, 3, 4), (5, 6, 7, 8)]).toDF(["col1", "col2", "col3", "col4"])

#populate col5, col6, col7
col5 = when((col('col1') == 0) & (col('col3') != 0), round(col('col4')/ col('col3'), 2)).otherwise(0)
col6 = when((col('col1') == 0) & (col('col4') != 0), round((col('col3') * col('col4'))/ col('col1'), 2)).otherwise(0)
col7 = col('col2')
df1 = df.withColumn("col5", col5).\
    withColumn("col6", col6).\
    withColumn("col7", col7)

#populate col8, col9, col10
col8 = when((col('col1') != 0) & (col('col3') != 0), round(col('col4')/ col('col3'), 2)).otherwise(0)
col9 = when((col('col1') != 0) & (col('col4') != 0), round((col('col3') * col('col4'))/ col('col1'), 2)).otherwise(0)
col10= concat(col('col2'), lit("_NEW"))
df2 = df.withColumn("col5", col8).\
    withColumn("col6", col9).\
    withColumn("col7", col10)

#final dataframe
final_df = df1.union(df2)
final_df.show()

#groupBy calculation
#final_df.groupBy("col1", "col2", "col3", "col4").agg(sum("col5")).show()

输出是:

+----+----+----+----+----+----+-----+
|col1|col2|col3|col4|col5|col6| col7|
+----+----+----+----+----+----+-----+
|   1|   2|   3|   4| 0.0| 0.0|    2|
|   5|   6|   7|   8| 0.0| 0.0|    6|
|   1|   2|   3|   4|1.33|12.0|2_NEW|
|   5|   6|   7|   8|1.14|11.2|6_NEW|
+----+----+----+----+----+----+-----+


如果它解决了您的问题,请不要忘记告诉我们:)

答案 1 :(得分:0)

选项很少:

  1. 根据需要多次使用withColumn(即需要添加多少列)
  2. 在数据框上使用map来解析列并使用适当的列返回Row并在之后创建DataFrame。