我在固定宽度文件中有时间序列数据,其中观察行(n根据样本大小而变化)发生在"标题"包含重要元数据的行(即样本号,日期等)。两种类型的行都包含字母数字字符。它看起来像这样(字符串缩短以便于阅读:
4 64001416230519844TP blahblah
5416001130 1 F 492273
5416001140 3 F 492274
5416001145 1 F 492275
5416001150 19 F 492276
5416001155 21 F 492277
5416001160 21 F 492278
5416001165 13 F 492279
5416001170 3 F 492280
5416001180 1 F 492281
4 64001544250619844RA blahblah
5544001125 1 F 492291
5544001130 3 F 492292
5544001135 4 F 492293
5544001140 11 F 492294
5544001145 13 F 492295
4 64002544250619844RA blahblah
etc.
标题行由字符串== 4中的第一个字符区分,并且有89个字符。观察行== 5并且有24个字符。
我想要的是将标题行粘贴到每个后续观察行(数据的子集),以便稍后我可以使用read_fwf解析字符串,并确保我可以通过标题中包含的信息对每个观察进行排序行。我不在乎原始标题行是否被删除。像这样:
5416001130 1 F 492273 4 64001416230519844TP blahblah
5416001140 3 F 492274 4 64001416230519844TP blahblah
5416001145 1 F 492275 4 64001416230519844TP blahblah
5416001150 19 F 492276 4 64001416230519844TP blahblah
5416001155 21 F 492277 4 64001416230519844TP blahblah
5416001160 21 F 492278 4 64001416230519844TP blahblah
5416001165 13 F 492279 4 64001416230519844TP blahblah
5416001170 3 F 492280 4 64001416230519844TP blahblah
5416001180 1 F 492281 4 64001416230519844TP blahblah
5544001125 1 F 492291 4 64001544250619844RA blahblah
5544001130 3 F 492292 4 64001544250619844RA blahblah
5544001135 4 F 492293 4 64001544250619844RA blahblah
5544001140 11 F 492294 4 64001544250619844RA blahblah
5544001145 13 F 492295 4 64001544250619844RA blahblah
etc...
我找到的最接近的解决方案是fwf file with headers every 5th row, headers were characters and observations numeric
提供的解决方案是一个循环,迭代地滚动行并测试它们是字符还是数字并相应地粘贴在一起。
text <- readLines('/path/to/file') # read in the file
split_text <- strsplit(text, "\\s+") # split each line on whitespace
for (line in split_text) { # iterate through lines
numeric_line <- suppressWarnings(as.numeric(line)) # try to convert the current line into a vector of numbers
if (is.na(numeric_line[[1]])) { # if it fails, we know we're on a header line
header <- line
} else {
for (i in seq(1, length(line), 2)) { # otherwise, we're on a data line, so take two numbers at once
print(c(header, line[[i]], line[[i+1]])) # and output the latest header with each pair of values
}
}
}
我尝试通过首先使用read.fwf()或read_fwf()读取fwf并将第一个字符定义为列来区分标题和观察值,从而使其适应我的数据:
packages = c('tidyverse','rgdal','car','audio','beepr','xlsx','magrittr','lubridate','RColorBrewer','haven')
invisible(lapply(packages, function(x) {if (!require(x, character.only = T)) {install.packages(x);require(x)}}))
DF <- read.fwf("directory/.dat", widths = c(1, 88), header = FALSE)
我的改编:
newdf <- for (i in DF) { # iterate through lines
if (DF$V1 == 4) { # if true, we know we're on a header row
header <- i
} else {
for (i in seq(1, length(DF$V2), 1)) { # otherwise = observation row
print(c(header, DF$V2[[i]], DF$V2[[i+1]])) # and output the latest header with each observation until you hit another header
}
}
}
#this is very slow and/or does not work
# I get the following error message
#Warning messages:
1: In if (DF$V1 == 4) { :
the condition has length > 1 and only the first element will be used
我也试过通过nchar()听众= 89和观察= 24来指定标题与观察行。 我意识到这里的循环解决方案可能是使用ifelse,但另一个问题出现了。 数据集长约39700行,我始终获得新数据。循环需要很长时间......
我想用data.table或dplyr语法来做这件事。
我已根据这些帖子尝试使用dplyr :: lag:dplyr example 1 和dplyr example 2并接近我想要的东西:
newdf<-DF %>%
mutate(new = replace(lag(V2), V1 != '5', NA))
但是正如您所看到的那样,新列仅粘贴上一行的信息......正如lag()所做的那样。
非常感谢任何帮助,谢谢你提前。
作为旁注。这些数据以前是在SAS中处理的,但是因为我不在那里做SAS。如果有帮助,我确实有SAS代码:
DATA A1;
FILENAME FREQLONG 'dir/FL.DAT';
INFILE FREQLONG;
INPUT
TYPE 1 @ ;
IF TYPE EQ 4 THEN LINK LIGNE4;
IF TYPE EQ 5 THEN DELETE;
RETURN;
LIGNE4:
INPUT var1 $ 6 - 8
var2 $ 9 - 11
var3 12 - 13
var4 14 - 15
var5 18 - 19
var6 $ 20 - 22
var7 $ 44 - 46
var8 $ 78;
DATA A2;
FILENAME FREQLONG 'dir/FL.DAT';
INFILE FREQLONG;
INPUT
TYPE 1 @ ;
IF TYPE EQ 4 THEN DELETE;
IF TYPE EQ 5 THEN LINK LIGNE5;
RETURN;
LIGNE5:
INPUT var1 $ 5 - 7
var2 $ 2 - 4
varz 8 - 10
vara 11 - 13
varb $ 15;
DATA A3;
SET A1;
PROC SORT;
BY var1 var2;
RUN;
DATA A4;
SET A2;
PROC SORT;
BY var1 var2;
RUN;
DATA A5;
MERGE A4 A3;
BY var1 var2;
RUN;
如您所见,它会拆分文件,对变量进行排序,合并它们。然而,这是逐年完成的,我希望与所有年份的一个文件一起工作。
答案 0 :(得分:2)
以下是使用tidyverse
的解决方案。
它创建一个只包含标题行的新列,然后填充没有带上标头的标题的行。最后,如果需要,您可以paste
列。
x <- read.table(text = "4 64001416230519844TP blahblah
5416001130 1 F 492273
5416001140 3 F 492274
5416001145 1 F 492275
5416001150 19 F 492276
5416001155 21 F 492277
5416001160 21 F 492278
5416001165 13 F 492279
5416001170 3 F 492280
5416001180 1 F 492281
4 64001544250619844RA blahblah
5544001125 1 F 492291
5544001130 3 F 492292
5544001135 4 F 492293
5544001140 11 F 492294
5544001145 13 F 492295", header = FALSE, sep = "\t")
library("tidyverse")
x %>%
rename(body = V1) %>%
mutate(
body = trimws(body),
head = if_else(grepl("^4", body), body, NA_character_),
body = if_else(is.na(head), body, NA_character_)
) %>%
fill(head, .direction = "down") %>%
filter(!is.na(body))
输出
body head
1 5416001130 1 F 492273 4 64001416230519844TP blahblah
2 5416001140 3 F 492274 4 64001416230519844TP blahblah
3 5416001145 1 F 492275 4 64001416230519844TP blahblah
4 5416001150 19 F 492276 4 64001416230519844TP blahblah
5 5416001155 21 F 492277 4 64001416230519844TP blahblah
6 5416001160 21 F 492278 4 64001416230519844TP blahblah
7 5416001165 13 F 492279 4 64001416230519844TP blahblah
8 5416001170 3 F 492280 4 64001416230519844TP blahblah
9 5416001180 1 F 492281 4 64001416230519844TP blahblah
10 5544001125 1 F 492291 4 64001544250619844RA blahblah
11 5544001130 3 F 492292 4 64001544250619844RA blahblah
12 5544001135 4 F 492293 4 64001544250619844RA blahblah
13 5544001140 11 F 492294 4 64001544250619844RA blahblah
14 5544001145 13 F 492295 4 64001544250619844RA blahblah
答案 1 :(得分:2)
另一种可能的解决方案(无tidyverse)是每行读入文件,查找标题行并将这些行粘贴到没有标题的行的末尾。之后,这些行被拆分并放入data.frame。
lines <- readLines("asd.dat")
# last index + 1 for iteration
headers <- c(which(grepl("^4 ", lines)), length(lines) + 1)
pastedLines <- c()
for(i in 1:(length(headers) - 1)) {
pastedLines <- c(pastedLines,
paste(lines[(headers[i] + 1) : (headers[i + 1] - 1)], lines[headers[i]]))
}
DF <- as.data.frame(matrix(unlist(strsplit(pastedLines, "\\s+")), nrow = length(pastedLines), byrow=T))
输出:
V1 V2 V3 V4 V5 V6 V7
1 5416001130 1 F 492273 4 64001416230519844TP blahblah
2 5416001140 3 F 492274 4 64001416230519844TP blahblah
3 5416001145 1 F 492275 4 64001416230519844TP blahblah
4 5416001150 19 F 492276 4 64001416230519844TP blahblah
5 5416001155 21 F 492277 4 64001416230519844TP blahblah
6 5416001160 21 F 492278 4 64001416230519844TP blahblah
7 5416001165 13 F 492279 4 64001416230519844TP blahblah
8 5416001170 3 F 492280 4 64001416230519844TP blahblah
9 5416001180 1 F 492281 4 64001416230519844TP blahblah
10 5544001125 1 F 492291 4 64001544250619844RA blahblah
11 5544001130 3 F 492292 4 64001544250619844RA blahblah
12 5544001135 4 F 492293 4 64001544250619844RA blahblah
13 5544001140 11 F 492294 4 64001544250619844RA blahblah
14 5544001145 13 F 492295 4 64001544250619844RA blahblah
答案 2 :(得分:2)
基础R的两个选项。两者都使用readLines
来读取原始文本数据(参见本答案的结尾)。
选项1:
i <- grepl(pattern = '^4 ', x)
x1 <- strsplit(x[!i], '\\s+')
x2 <- strsplit(x[i], '\\s+')
d1 <- do.call(rbind.data.frame, x1)
d2 <- do.call(rbind.data.frame, x2)
d <- cbind(d1, d2[cumsum(i)[-which(i)],])
names(d) <- paste0('V',1:ncol(d))
给出:
> d V1 V2 V3 V4 V5 V6 V7 1 5416001130 1 F 492273 4 64001416230519844TP blahblah 1.1 5416001140 3 F 492274 4 64001416230519844TP blahblah 1.2 5416001145 1 F 492275 4 64001416230519844TP blahblah 1.3 5416001150 19 F 492276 4 64001416230519844TP blahblah 1.4 5416001155 21 F 492277 4 64001416230519844TP blahblah 1.5 5416001160 21 F 492278 4 64001416230519844TP blahblah 1.6 5416001165 13 F 492279 4 64001416230519844TP blahblah 1.7 5416001170 3 F 492280 4 64001416230519844TP blahblah 1.8 5416001180 1 F 492281 4 64001416230519844TP blahblah 2 5544001125 1 F 492291 4 64001544250619844RA blahblah 2.1 5544001130 3 F 492292 4 64001544250619844RA blahblah 2.2 5544001135 4 F 492293 4 64001544250619844RA blahblah 2.3 5544001140 11 F 492294 4 64001544250619844RA blahblah 2.4 5544001145 13 F 492295 4 64001544250619844RA blahblah
选项2:
rawlist <- split(x, cumsum(grepl(pattern = '^4 ', x)))
l1 <- lapply(rawlist, function(x) read.table(text = x, skip = 1, header = FALSE))
l2 <- lapply(rawlist, function(x) read.table(text = x, nrows = 1, header = FALSE))
reps <- sapply(l1, nrow)
d1 <- do.call(rbind, l1)
d2 <- do.call(rbind, l2)[rep(1:length(l2), reps),]
d <- cbind(d1, d2)
names(d) <- paste0('V',1:ncol(d))
给出:
> d V1 V2 V3 V4 V5 V6 V7 1.1 5416001130 1 FALSE 492273 4 64001416230519844TP blahblah 1.2 5416001140 3 FALSE 492274 4 64001416230519844TP blahblah 1.3 5416001145 1 FALSE 492275 4 64001416230519844TP blahblah 1.4 5416001150 19 FALSE 492276 4 64001416230519844TP blahblah 1.5 5416001155 21 FALSE 492277 4 64001416230519844TP blahblah 1.6 5416001160 21 FALSE 492278 4 64001416230519844TP blahblah 1.7 5416001165 13 FALSE 492279 4 64001416230519844TP blahblah 1.8 5416001170 3 FALSE 492280 4 64001416230519844TP blahblah 1.9 5416001180 1 FALSE 492281 4 64001416230519844TP blahblah 2.1 5544001125 1 FALSE 492291 4 64001544250619844RA blahblah 2.2 5544001130 3 FALSE 492292 4 64001544250619844RA blahblah 2.3 5544001135 4 FALSE 492293 4 64001544250619844RA blahblah 2.4 5544001140 11 FALSE 492294 4 64001544250619844RA blahblah 2.5 5544001145 13 FALSE 492295 4 64001544250619844RA blahblah
使用过的数据:
x <- readLines(textConnection('4 64001416230519844TP blahblah
5416001130 1 F 492273
5416001140 3 F 492274
5416001145 1 F 492275
5416001150 19 F 492276
5416001155 21 F 492277
5416001160 21 F 492278
5416001165 13 F 492279
5416001170 3 F 492280
5416001180 1 F 492281
4 64001544250619844RA blahblah
5544001125 1 F 492291
5544001130 3 F 492292
5544001135 4 F 492293
5544001140 11 F 492294
5544001145 13 F 492295'))
要阅读您的实际数据,您可以使用以下内容:
x <- readLine('name-of-datafile.txt')
答案 3 :(得分:1)
这是一个可能的基本R解决方案试图更高效的内存:
rawtext <- "4 64001416230519844TP blahblah
5416001130 1 F 492273
5416001140 3 F 492274
5416001145 1 F 492275
5416001150 19 F 492276
5416001155 21 F 492277
5416001160 21 F 492278
5416001165 13 F 492279
5416001170 3 F 492280
5416001180 1 F 492281
4 64001544250619844RA blahblah
5544001125 1 F 492291
5544001130 3 F 492292
5544001135 4 F 492293
5544001140 11 F 492294
5544001145 13 F 492295"
首先读取数据一次,然后获取标题行号。请注意,这可以通过命令行实用程序完成,例如...... grep
,在R:
text <- readLines(textConnection(rawtext))
header_rows <- grep("^4", text)
lengths <- diff(c(header_rows, length(text) + 1)) - 1
rm(text)
然后实际上重新读取每一块,但只有必要的行数:
do.call(rbind, mapply(
function(skip, nrows, ...) data.frame(
read.table(skip = skip, nrows = nrows, ...),
read.table(skip = skip - 1, nrows = 1, ...)
),
MoreArgs = list(text = rawtext),
header_rows,
lengths,
SIMPLIFY = FALSE
))
# V1 V2 V3 V4 V1.1 V2.1 V3.1
# 1 5416001130 1 FALSE 492273 4 64001416230519844TP blahblah
# 2 5416001140 3 FALSE 492274 4 64001416230519844TP blahblah
# 3 5416001145 1 FALSE 492275 4 64001416230519844TP blahblah
# 4 5416001150 19 FALSE 492276 4 64001416230519844TP blahblah
# 5 5416001155 21 FALSE 492277 4 64001416230519844TP blahblah
# 6 5416001160 21 FALSE 492278 4 64001416230519844TP blahblah
# 7 5416001165 13 FALSE 492279 4 64001416230519844TP blahblah
# 8 5416001170 3 FALSE 492280 4 64001416230519844TP blahblah
# 9 5416001180 1 FALSE 492281 4 64001416230519844TP blahblah
# 10 5544001125 1 FALSE 492291 4 64001544250619844RA blahblah
# 11 5544001130 3 FALSE 492292 4 64001544250619844RA blahblah
# 12 5544001135 4 FALSE 492293 4 64001544250619844RA blahblah
# 13 5544001140 11 FALSE 492294 4 64001544250619844RA blahblah
# 14 5544001145 13 FALSE 492295 4 64001544250619844RA blahblah