kreisselmeier steinhauser函数与模拟退火

时间:2011-01-07 00:00:01

标签: matlab mathematical-optimization simulated-annealing

如何使用模拟退火优化实现Kreisselmeier Steinhauser(KS)功能? 我的带KS函数的SA代码如下:

while (Gen < GenMax )
while    iter > 0 %PerturbIter 
    NewZ = PerturbZ(CurZ);
    NewX = lb + (ub-lb).*(sin(NewZ)).^2;
    x0 = NewX;
    NewFitness = KS(NewX,x0);
    Delta_Cost = NewFitness - CurFitness;
    if Delta_Cost <= 0
        CurZ = NewZ; CurX = NewX;
        CurCost = NewFitness;
        if NewFitness < BestFitness
            BestZ = NewZ; BestX = NewX;
            BestFitness = NewFitness;            
        end
   else
        if rand() < exp(-Delta_Cost/T)
            CurZ = NewZ; CurX = NewX;
            CurFitness = NewFitness;
        end
    end
    iter = iter - 1;        
    %x0 = BestX;
end

figure(1), hold on
plot(Gen,BestFitness,'-md','MarkerEdgeColor','b','MarkerFaceColor','b','MarkerSize',3)
T = Cooling(T);
Gen = Gen+1;
iter = PerturbIter;    

end

KS功能实现如下:

function fun = ksfunc(x, x0, objfun, confun, rho)
obj = objfun(x);
[con,coneq] = confun(x);

[con0,coneq] = confun(x0);
temp = obj./objfun(x0) - 1 - max(con0);
temp = [temp; con];
fmax = max(temp);
summ = sum( exp( rho*(temp - fmax) ));

fun = fmax + log(summ)/rho;

0 个答案:

没有答案