>Panel_Data
concentration Statistic name
1 100 39.100 CD4 subset_but
2 10 39.700 CD4 subset_but
3 1 0.012 CD4 subset_but
4 0 41.200 CD4 subset_but
5 100 3.970 CD4 subset/CD103 subset_but
6 10 2.940 CD4 subset/CD103 subset_but
7 1 100.000 CD4 subset/CD103 subset_but
8 0 2.620 CD4 subset/CD103 subset_but
9 100 57.900 CD4 subset/CD39 subset_but
10 10 31.200 CD4 subset/CD39 subset_but
11 1 0.000 CD4 subset/CD39 subset_but
12 0 30.600 CD4 subset/CD39 subset_but
13 100 8.090 CD4 subset/CD69 subset_but
14 10 6.530 CD4 subset/CD69 subset_but
15 1 100.000 CD4 subset/CD69 subset_but
16 0 4.930 CD4 subset/CD69 subset_but
17 100 49.700 CD4 subset/CD73 subset_but
18 10 51.300 CD4 subset/CD73 subset_but
19 1 25.000 CD4 subset/CD73 subset_but
20 0 49.800 CD4 subset/CD73 subset_but
21 100 4.520 CD4 subset/integrin B7 subset_but
22 10 4.230 CD4 subset/integrin B7 subset_but
23 1 75.000 CD4 subset/integrin B7 subset_but
24 0 4.370 CD4 subset/integrin B7 subset_but
25 100 34.300 CD8a subset_but
26 10 36.700 CD8a subset_but
27 1 0.012 CD8a subset_but
28 0 33.500 CD8a subset_but
29 100 4.610 CD8a subset/CD103 subset_but
30 10 3.400 CD8a subset/CD103 subset_but
31 1 75.000 CD8a subset/CD103 subset_but
32 0 4.060 CD8a subset/CD103 subset_but
33 100 74.900 CD8a subset/CD39 subset_but
34 10 56.900 CD8a subset/CD39 subset_but
35 1 0.000 CD8a subset/CD39 subset_but
36 0 54.300 CD8a subset/CD39 subset_but
37 100 7.320 CD8a subset/CD69 subset_but
38 10 6.870 CD8a subset/CD69 subset_but
39 1 0.000 CD8a subset/CD69 subset_but
40 0 5.480 CD8a subset/CD69 subset_but
41 100 72.500 CD8a subset/CD73 subset_but
42 10 73.200 CD8a subset/CD73 subset_but
43 1 0.000 CD8a subset/CD73 subset_but
44 0 73.700 CD8a subset/CD73 subset_but
45 100 16.400 CD8a subset/integrin B7 subset_but
46 10 17.000 CD8a subset/integrin B7 subset_but
47 1 0.000 CD8a subset/integrin B7 subset_but
48 0 19.900 CD8a subset/integrin B7 subset_but
我使用以下代码绘制了上述数据:
Panel_Data_Graph <- ggplot(Panel_Data,
aes(concentration, Statistic)) +
geom_point(color="black") +
facet_wrap(~ name, ncol = 3) +
xlab("Concentration") +
ylab(expression("Statistic")) +
geom_smooth(method=lm, se=FALSE, fullrange=TRUE, size = 0.4) +
theme_bw()
print(Panel_Data_Graph)
但是,图表输出如下:
我希望图表按Panel_Data $ name排序。例如,左上行应该是CD4 subset_but,然后是CD4子集/ CD103 subset_but,然后是CD子集/ CD39 subset_but。
对于图中显示的对应正确图形的回归线,图形必须按以下顺序排列:
regrDF
name lbl
1 CD4 subset_but y = -0.358x + 40
2 CD4 subset/CD103 subset_but y = 0.396x + 20
3 CD4 subset/CD39 subset_but y = -0.334x + 40
4 CD4 subset/CD69 subset_but y = 0.0897x + 40
5 CD4 subset/CD73 subset_but y = -0.267x + 30
6 CD4 subset/integrin B7 subset_but y = 0.139x + 30
7 CD8a subset_but y = -0.263x + 30
8 CD8a subset/CD103 subset_but y = 0.412x + 40
9 CD8a subset/CD39 subset_but y = 0.0363x + 4
10 CD8a subset/CD69 subset_but y = 0.27x + 50
11 CD8a subset/CD73 subset_but y = 0.0471x + 10
12 CD8a subset/integrin B7 subset_but y = 0.128x + 20
答案 0 :(得分:3)
以这种方式修改数据框
Panel_Data$name <- factor(Panel_Data$name, levels=c(order-you-want), ordered=TRUE)
您需要将因子级别设置为ordered=TRUE
请参阅此可重现的示例
data <- mtcars
data$cyl <- factor(data$cyl, levels=c(6,4,8), ordered=TRUE)
library(ggplot2)
# unordered
ggplot(data=mtcars, aes(x=carb, y=mpg, color=cyl)) +
geom_point() +
facet_wrap(~cyl, ncol=3)
# ordered
ggplot(data=data, aes(x=carb, y=mpg, color=cyl)) +
geom_point() +
facet_wrap(~cyl, ncol=3)
答案 1 :(得分:0)
levels(Panel_Data$name) <- Panel_Data$name[1:(i+3)==(i+3)]