import pandas as pd
import numpy as np
pb = {"mark_up_id":{"0":"123","1":"456","2":"789","3":"111","4":"222"},"mark_up":{"0":1.2987,"1":1.5625,"2":1.3698,"3":1.3333,"4":1.4589}}
data = {"id":{"0":"K69","1":"K70","2":"K71","3":"K72","4":"K73","5":"K74","6":"K75","7":"K79","8":"K86","9":"K100"},"cost":{"0":29.74,"1":9.42,"2":9.42,"3":9.42,"4":9.48,"5":9.48,"6":24.36,"7":5.16,"8":9.8,"9":3.28},"mark_up_id":{"0":"123","1":"456","2":"789","3":"111","4":"222","5":"333","6":"444","7":"555","8":"666","9":"777"}}
pb = pd.DataFrame(data=pb).set_index('mark_up_id')
df = pd.DataFrame(data=data)
我知道我可以使用类似的东西:
df['mark_up_id'].map(pb['mark_up'])
执行v-look-up。我想对这个回报进行加价,并将每个成本乘以一个共同的索引,以产生一个名为price的新列。
我知道我可以将两者合并然后运行计算。这就是我如何产生所需的输出。我希望能够做到这一点类似于你如何遍历字典并使用键在另一个字典中查找值并在循环内执行某种计算。考虑到PANDAS数据帧位于字典之上,必须有一种方法可以使用join / map / apply的组合来实现这一点,而无需实际连接内存中的两个数据集。
期望的输出:
desired_output = {"cost":{"0":29.74,"1":9.42,"2":9.42,"3":9.42,"4":9.48},"id":{"0":"K69","1":"K70","2":"K71","3":"K72","4":"K73"},"mark_up_id":{"0":"123","1":"456","2":"111","3":"123","4":"789"},"price":{"0":38.623338,"1":14.71875,"2":12.559686,"3":12.233754,"4":12.985704}}
do = pd.DataFrame(data=desired_output)
奖励积分:
解释接受的答案与......之间的区别
pb.loc[df['mark_up_id']]['mark_up'] * df.set_index('mark_up_id')['cost']
以及为什么我从上面得到的以下lambda函数出现错误......
df.apply(lambda x : x['cost']*pb.loc[x['mark_up_id']],axis=1 )
返回错误说:
KeyError: ('the label [333] is not in the [index]', u'occurred at index 5')
答案 0 :(得分:3)
尝试
df['price'] = df['mark_up_id'].map(pb['mark_up']) * df['cost']
你得到了
cost id mark_up_id price
0 29.74 K69 123 38.623338
1 9.42 K70 456 14.718750
2 9.42 K71 111 12.559686
3 9.42 K72 123 12.233754
4 9.48 K73 789 12.985704
答案 1 :(得分:2)
更新:
In [79]: df = df.assign(price=df['mark_up_id'].map(pb['mark_up']) * df['cost']).dropna()
In [80]: df
Out[80]:
cost id mark_up_id price
0 29.74 K69 123 38.623338
1 9.42 K70 456 14.718750
2 9.42 K71 789 12.903516
3 9.42 K72 111 12.559686
4 9.48 K73 222 13.830372
旧回答:
In [67]: df = df.assign(price=df['mark_up_id'].map(pb['mark_up']) * df['cost'])
In [68]: df
Out[68]:
cost id mark_up_id price
0 29.74 K69 123 38.623338
1 9.42 K70 456 14.718750
2 9.42 K71 111 12.559686
3 9.42 K72 123 12.233754
4 9.48 K73 789 12.985704
答案 2 :(得分:2)
使用merge
df=df.merge(df1,left_on='mark_up_id',right_index=True)
df.assign(price=df['cost'].mul(df['mark_up'])).drop('mark_up',1)
Out[254]:
cost id mark_up_id price
0 29.74 K69 123 38.623338
3 9.42 K72 123 12.233754
1 9.42 K70 456 14.718750
2 9.42 K71 111 12.559686
4 9.48 K73 789 12.985704
如果你确实想要apply
和lambda
:它真的很丑......真的...
df.apply(lambda x : x['cost']*df1.loc[x['mark_up_id']],axis=1 )
改为(更丑陋...... T_T)
df.apply(lambda x :x['cost']*df1.loc[x['mark_up_id']] if pd.Series(x['mark_up_id']).isin(df1.index)[0] else np.nan,axis=1 )
答案 3 :(得分:0)
df['price'] = df['cost'] * df['mark_up_id'].map(pb['markup'])
现在df
将是您想要的输出。