与scitkit-learn.ensemble.GradientBoostingRegressor的根均值对数平方错误问题

时间:2017-09-13 16:08:05

标签: python machine-learning scikit-learn

我正在参加Kaggle比赛(data here),我在使用scikit-learn的GradientBoostingRegressor时遇到了麻烦。竞争使用均方根对数平方误差(RMLSE)来评估预测。

为了MWE,这里是我用来清理上面链接中train.csv的代码:

import datetime
import pandas as pd

train = pd.read_csv("train.csv", index_col=0)

train.pickup_datetime = pd.to_datetime(train.pickup_datetime)
train["pickup_month"] = train.pickup_datetime.apply(lambda x: x.month)
train["pickup_day"] = train.pickup_datetime.apply(lambda x: x.day)
train["pickup_hour"] = train.pickup_datetime.apply(lambda x: x.hour)
train["pickup_minute"] = train.pickup_datetime.apply(lambda x: x.minute)
train["pickup_weekday"] = train.pickup_datetime.apply(lambda x: x.weekday())
train = train.drop(["pickup_datetime", "dropoff_datetime"], axis=1)
train["store_and_fwd_flag"] = pd.get_dummies(train.store_and_fwd_flag, drop_first=True)

X_train = train.drop("trip_duration", axis=1)
y_train = train.trip_duration

为了说明工作的内容,如果我使用随机林,那么RMSLE计算得很好:

import numpy as np
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.metrics import make_scorer
from sklearn.model_selection import cross_val_score


def rmsle(predicted, real):
    sum=0.0
    for x in range(len(predicted)):
        p = np.log(predicted[x]+1)
        r = np.log(real[x]+1)
        sum = sum + (p - r)**2
    return (sum/len(predicted))**0.5

rmsle_score = make_scorer(rmsle, greater_is_better=False)

rf = RandomForestRegressor(random_state=1839, n_jobs=-1, verbose=2)
rf_scores = cross_val_score(rf, X_train, y_train, cv=3, scoring=rmsle_score)
print(np.mean(rf_scores))

运行得很好。 然而,渐变提升回归量引发RuntimeWarning: invalid value encountered in log,我从nan语句中得到print。查看三个RMSLE分数的数组,它们都是nan

gb = GradientBoostingRegressor(verbose=2)
gbr_scores = cross_val_score(gb, X_train, y_train, cv=3, scoring=rmsle_score)
print(np.mean(gbr_scores))

我认为这是因为我在某些不应该去的地方得到负值。 Kaggle告诉我它遇到零或非负RMSLE,当我上传我的预测时,看看它是否与我的代码有关。有没有理由为什么梯度增强不能用于这个问题?如果我使用mean_squared_error作为得分手(mse_score = make_scorer(mean_squared_error, greater_is_better=False)),那么它就会很好地返回。

我确信我错过了一些关于渐变增强的简单方法;为什么这个评分方法适用于梯度增强回归量?

2 个答案:

答案 0 :(得分:4)

我建议你对此进行矢量化

def rmsle(y, y0):
    return np.sqrt(np.mean(np.square(np.log1p(y) - np.log1p(y0))))

基准可以在这里找到

https://www.kaggle.com/jpopham91/rmlse-vectorized

答案 1 :(得分:3)

首先,make_scorer为您的函数采用的语法具有以下形式:

def metric(real,predictions)

def metric(predictions,real)

因此,您需要在代码中打印real值,以获取回归量的实际predicted值。

只需按如下方式更改功能,它就能正常工作:

def rmsle(real, predicted):
    sum=0.0
    for x in range(len(predicted)):
        if predicted[x]<0 or real[x]<0: #check for negative values
            continue
        p = np.log(predicted[x]+1)
        r = np.log(real[x]+1)
        sum = sum + (p - r)**2
    return (sum/len(predicted))**0.5

其次,你的回归者给出了行号的预测错误值。在第一个交叉验证集中的399937。希望这可以帮助 !最适合您的比赛。