尝试在keras中使用纸张Ensemble Application of Convolutional and Recurrent Neural Networks for Multi-label Text Categorization实现模型
我的代码为
document_input = Input(shape=(None,), dtype='int32')
embedding_layer = Embedding(vocab_size, WORD_EMB_SIZE, weights=[initial_embeddings],
input_length=DOC_SEQ_LEN, trainable=True)
convs = []
filter_sizes = [2,3,4,5]
doc_embedding = embedding_layer(document_input)
for filter_size in filter_sizes:
l_conv = Conv1D(filters=256, kernel_size=filter_size, padding='same', activation='relu')(doc_embedding)
l_pool = MaxPooling1D(filter_size)(l_conv)
convs.append(l_pool)
l_merge = Concatenate(axis=1)(convs)
l_flat = Flatten()(l_merge)
l_dense = Dense(100, activation='relu')(l_flat)
l_dense_3d = Reshape((1,int(l_dense.shape[1])))(l_dense)
gene_variation_input = Input(shape=(None,), dtype='int32')
gene_variation_embedding = embedding_layer(gene_variation_input)
rnn_layer = LSTM(100, return_sequences=False, stateful=True)(gene_variation_embedding,initial_state=[l_dense_3d])
l_flat = Flatten()(rnn_layer)
output_layer = Dense(9, activation='softmax')(l_flat)
model = Model(inputs=[document_input,gene_variation_input], outputs=[output_layer])
我不知道我是否正确设置上图中的文字特征向量!我试过,我得到了错误
ValueError: Layer lstm_9 expects 3 inputs, but it received 2 input tensors. Input received: [<tf.Tensor 'embedding_10_1/Gather:0' shape=(?, ?, 200) dtype=float32>, <tf.Tensor 'reshape_9/Reshape:0' shape=(?, 1, 100) dtype=float32>]
我的确遵循了keras documentation和code
中关于指定RNN初始状态的说明的部分任何帮助表示感谢。
更新 建议和更多阅读代码模型看起来像这样
embedding_layer = Embedding(vocab_size, WORD_EMB_SIZE, weights=[initial_embeddings], trainable=True)
document_input = Input(shape=(DOC_SEQ_LEN,), batch_shape=(BATCH_SIZE, DOC_SEQ_LEN),dtype='int32')
doc_embedding = embedding_layer(document_input)
convs = []
filter_sizes = [2,3,4,5]
for filter_size in filter_sizes:
l_conv = Conv1D(filters=256, kernel_size=filter_size, padding='same', activation='relu')(doc_embedding)
l_pool = MaxPooling1D(filter_size)(l_conv)
convs.append(l_pool)
l_merge = Concatenate(axis=1)(convs)
l_flat = Flatten()(l_merge)
l_dense = Dense(100, activation='relu')(l_flat)
gene_variation_input = Input(shape=(GENE_VARIATION_SEQ_LEN,), batch_shape=(BATCH_SIZE, GENE_VARIATION_SEQ_LEN),dtype='int32')
gene_variation_embedding = embedding_layer(gene_variation_input)
rnn_layer = LSTM(100, return_sequences=False,
batch_input_shape=(BATCH_SIZE, GENE_VARIATION_SEQ_LEN, WORD_EMB_SIZE),
stateful=False)(gene_variation_embedding, initial_state=[l_dense, l_dense])
output_layer = Dense(9, activation='softmax')(rnn_layer)
model = Model(inputs=[document_input,gene_variation_input], outputs=[output_layer])
模型摘要
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_8 (InputLayer) (32, 9) 0
____________________________________________________________________________________________________
input_7 (InputLayer) (32, 4000) 0
____________________________________________________________________________________________________
embedding_6 (Embedding) multiple 73764400 input_7[0][0]
input_8[0][0]
____________________________________________________________________________________________________
conv1d_13 (Conv1D) (32, 4000, 256) 102656 embedding_6[0][0]
____________________________________________________________________________________________________
conv1d_14 (Conv1D) (32, 4000, 256) 153856 embedding_6[0][0]
____________________________________________________________________________________________________
conv1d_15 (Conv1D) (32, 4000, 256) 205056 embedding_6[0][0]
____________________________________________________________________________________________________
conv1d_16 (Conv1D) (32, 4000, 256) 256256 embedding_6[0][0]
____________________________________________________________________________________________________
max_pooling1d_13 (MaxPooling1D) (32, 2000, 256) 0 conv1d_13[0][0]
____________________________________________________________________________________________________
max_pooling1d_14 (MaxPooling1D) (32, 1333, 256) 0 conv1d_14[0][0]
____________________________________________________________________________________________________
max_pooling1d_15 (MaxPooling1D) (32, 1000, 256) 0 conv1d_15[0][0]
____________________________________________________________________________________________________
max_pooling1d_16 (MaxPooling1D) (32, 800, 256) 0 conv1d_16[0][0]
____________________________________________________________________________________________________
concatenate_4 (Concatenate) (32, 5133, 256) 0 max_pooling1d_13[0][0]
max_pooling1d_14[0][0]
max_pooling1d_15[0][0]
max_pooling1d_16[0][0]
____________________________________________________________________________________________________
flatten_4 (Flatten) (32, 1314048) 0 concatenate_4[0][0]
____________________________________________________________________________________________________
dense_6 (Dense) (32, 100) 131404900 flatten_4[0][0]
____________________________________________________________________________________________________
lstm_4 (LSTM) (32, 100) 120400 embedding_6[1][0]
dense_6[0][0]
dense_6[0][0]
____________________________________________________________________________________________________
dense_7 (Dense) (32, 9) 909 lstm_4[0][0]
====================================================================================================
Total params: 206,008,433
Trainable params: 206,008,433
Non-trainable params: 0
____________________________________________________________________________________________________
答案 0 :(得分:2)
LSTM有2个隐藏状态,但您只提供1个初始状态。您可以执行以下操作之一:
将LSTM替换为只有1个隐藏状态的RNN,例如GRU:
rnn_layer = GRU(100, return_sequences=False, stateful=True)
(gene_variation_embedding,initial_state=[l_dense_3d])
或者将零作为LSTM的第二个隐藏状态的初始状态传递:
zeros = Lambda(lambda x: K.zeros_like(x), output_shape=lambda s: s)(l_dense_3d)
rnn_layer = LSTM(100, return_sequences=False, stateful=True)
(gene_variation_embedding,initial_state=[l_dense_3d, zeros])