绘制R中的梯度下降函数

时间:2017-09-12 15:55:26

标签: r plot gradient-descent

我在R中实现了多元线性回归,然后是批量更新梯度下降算法。我现在正试图绘制这种梯度下降的结果。

我找到了有关如何创建地图herehere的指导链接。

这些教程的问题在于,在这两种情况下,它们都明确定义了线性回归方程(也不是多元方程)。

如何在下面列出的代码中使用不同的学习速率和收敛阈值多次创建相似的图来覆盖运行gradDescent函数的结果:

data <- read.csv("Data/Bike-Sharing-Dataset/hour.csv")

# Select the useable features
data1 <- data[, c("season", "mnth", "hr", "holiday", "weekday", "workingday", "weathersit", "temp", "atemp", "hum", "windspeed", "cnt")]

# Set seed
set.seed(100)

# Split the data
trainingObs<-sample(nrow(data1),0.70*nrow(data1),replace=FALSE)

# Create the training dataset
trainingDS<-data1[trainingObs,]

# Create the test dataset
testDS<-data1[-trainingObs,]

# Create the variables
y <- trainingDS$cnt
y_test <- testDS$cnt
X <- as.matrix(trainingDS[-ncol(trainingDS)])
X_test <- as.matrix(testDS[-ncol(testDS)])

int <- rep(1, length(y))

# Add intercept column to X
X <- cbind(int, X)
X_test <- cbind(int, X_test)

# Solve for beta
betas <- solve(t(X) %*% X) %*% t(X) %*% y

# Round the beta values
betas <- round(betas, 2)

# Gradient descent 1
gradientDesc <- function(x, y, learn_rate, conv_threshold, max_iter) {
  n <- nrow(x) 
  m <- runif(ncol(x), 0, 1)
  yhat <- x %*% m

  cost <- sum((y - yhat) ^ 2) / (2*n)

  converged = F
  iterations = 0

  while(converged == F) {
    ## Implement the gradient descent algorithm
    m <- m - learn_rate * ( 1/n * t(x) %*% (yhat - y))
    yhat <- x %*% m
    new_cost <- sum((y - yhat) ^ 2) / (2*n)

    if( abs(cost - new_cost) <= conv_threshold) {
      converged = T
    }
    iterations = iterations + 1
    cost <- new_cost

    if(iterations >= max_iter) break
  }
  return(list(converged = converged, 
              num_iterations = iterations, 
              cost = cost,
              new_cost = new_cost,
              coefs = m) )
}

out <- gradientDesc(X, y, 0.005, 0.0000001, 200000)

注意: 使用的数据是 -

  

自行车共享-数据集

     

UCI机器学习库

1 个答案:

答案 0 :(得分:2)

因为这是多变量情况,所以很难将cost作为参数进行绘制。但是,可以根据迭代次数绘制cost

为此,我们需要在每次迭代中保留cost的值。我们可以在data.frame循环中创建while并将其添加到要返回的列表中。

data <- read.csv("Data/Bike-Sharing-Dataset/hour.csv")

# Select the useable features
data1 <- data[, c("season", "mnth", "hr", "holiday", "weekday", "workingday", "weathersit", "temp", "atemp", "hum", "windspeed", "cnt")]

# Set seed
set.seed(100)

# Split the data
trainingObs<-sample(nrow(data1),0.70*nrow(data1),replace=FALSE)

# Create the training dataset
trainingDS<-data1[trainingObs,]

# Create the test dataset
testDS<-data1[-trainingObs,]

# Create the variables
y <- trainingDS$cnt
y_test <- testDS$cnt
X <- as.matrix(trainingDS[-ncol(trainingDS)])
X_test <- as.matrix(testDS[-ncol(testDS)])

int <- rep(1, length(y))

# Add intercept column to X
X <- cbind(int, X)
X_test <- cbind(int, X_test)

# Solve for beta
betas <- solve(t(X) %*% X) %*% t(X) %*% y

# Round the beta values
betas <- round(betas, 2)

# Gradient descent 1
gradientDesc <- function(x, y, learn_rate, conv_threshold, max_iter) {
  n <- nrow(x) 
  m <- runif(ncol(x), 0, 1)
  yhat <- x %*% m

  cost <- sum((y - yhat) ^ 2) / (2*n)

  converged = F
  iterations = 0

  while(converged == F) {
    ## Implement the gradient descent algorithm
    m <- m - learn_rate * ( 1/n * t(x) %*% (yhat - y))
    yhat <- x %*% m
    new_cost <- sum((y - yhat) ^ 2) / (2*n)

    if( abs(cost - new_cost) <= conv_threshold) {
      converged = T
    }

    step <- data.frame(iteration = iterations,
                       cost = cost,
                       new_cost = new_cost)

    if(exists("iters")) {
      iters <- rbind(iters, step)
    } else {
      iters <- step
    }

    iterations = iterations + 1
    cost <- new_cost

    if(iterations >= max_iter) break
  }
  return(list(converged = converged, 
              num_iterations = iterations, 
              cost = cost,
              new_cost = new_cost,
              coefs = m,
              iters = iters))
}

现在可视化new_cost 10000次迭代:

out <- gradientDesc(X, y, 0.005, 0.0000001, 10000)

library(ggplot2)
ggplot(data = out$iters, mapping = aes(x = iteration, y = new_cost))+
  geom_line()

gradient descent

希望它有效。