我正在学习pytorch的基础知识,并考虑创建一个简单的4层神经网络,带有辍学训练IRIS数据集进行分类。在参考了许多教程后,我编写了这段代码。
import pandas as pd
from sklearn.datasets import load_iris
import torch
from torch.autograd import Variable
epochs=300
batch_size=20
lr=0.01
#loading data as numpy array
data = load_iris()
X=data.data
y=pd.get_dummies(data.target).values
#convert to tensor
X= Variable(torch.from_numpy(X), requires_grad=False)
y=Variable(torch.from_numpy(y), requires_grad=False)
print(X.size(),y.size())
#neural net model
model = torch.nn.Sequential(
torch.nn.Linear(4, 10),
torch.nn.ReLU(),
torch.nn.Dropout(),
torch.nn.Linear(10, 5),
torch.nn.ReLU(),
torch.nn.Dropout(),
torch.nn.Linear(5, 3),
torch.nn.Softmax()
)
print(model)
# Loss and Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
loss_func = torch.nn.CrossEntropyLoss()
for i in range(epochs):
# Forward pass
y_pred = model(X)
# Compute and print loss.
loss = loss_func(y_pred, y)
print(i, loss.data[0])
# Before the backward pass, use the optimizer object to zero all of the
# gradients for the variables it will update (which are the learnable weights
# of the model)
optimizer.zero_grad()
# Backward pass
loss.backward()
# Calling the step function on an Optimizer makes an update to its parameters
optimizer.step()
目前我遇到两个问题。
20
。我该怎么做?y_pred = model(X)
显示此错误错误
TypeError: addmm_ received an invalid combination of arguments - got (int, int, torch.DoubleTensor, torch.FloatTensor), but expected one of:
* (torch.DoubleTensor mat1, torch.DoubleTensor mat2)
* (torch.SparseDoubleTensor mat1, torch.DoubleTensor mat2)
* (float beta, torch.DoubleTensor mat1, torch.DoubleTensor mat2)
* (float alpha, torch.DoubleTensor mat1, torch.DoubleTensor mat2)
* (float beta, torch.SparseDoubleTensor mat1, torch.DoubleTensor mat2)
* (float alpha, torch.SparseDoubleTensor mat1, torch.DoubleTensor mat2)
* (float beta, float alpha, torch.DoubleTensor mat1, torch.DoubleTensor mat2)
didn't match because some of the arguments have invalid types: (int, int, torch.DoubleTensor, !torch.FloatTensor!)
* (float beta, float alpha, torch.SparseDoubleTensor mat1, torch.DoubleTensor mat2)
didn't match because some of the arguments have invalid types: (int, int, !torch.DoubleTensor!, !torch.FloatTensor!)
答案 0 :(得分:4)
我想将批量大小设置为20.我该怎么做?
对于数据处理和加载,PyTorch提供两个类,一个是Dataset
,用于表示数据集。具体来说,Dataset
提供了使用样本索引从整个数据集中获取一个样本的接口。
但是Dataset
是不够的,对于大型数据集,我们需要进行批处理。因此,PyTorch提供了第二个类Dataloader
,用于根据批量大小和其他参数从Dataset
生成批次。
对于您的具体情况,我认为您应该尝试TensorDataset
。然后使用Dataloader
将批量大小设置为20.只需查看PyTorch official examples即可了解如何执行此操作。
在此步骤y_pred = model(X)显示此错误
错误消息非常有用。您对模型的输入X
是DoubleTensor
类型。但您的模型参数的类型为FloatTensor
。在PyTorch中,您无法在不同类型的张量之间进行操作。你应该做的是替换
X= Variable(torch.from_numpy(X), requires_grad=False)
带
X= Variable(torch.from_numpy(X).float(), requires_grad=False)
现在,X
的类型为FloatTensor
,错误消息应该消失。
此外,作为一个温和的提醒,互联网上有很多关于你的问题的材料可以充分解决你的问题。你应该努力自己解决它。
答案 1 :(得分:0)
可能同样的问题:Pytorch: Convert FloatTensor into DoubleTensor
简而言之:从numpy转换时,值存储在DoubleTensor中,而优化器需要FloatTensor。你必须改变其中一个。