我一直在努力发展一种神经网络,使用遗传算法将值打印到一个神经网络。
我已尝试调试代码,但不知道我搞砸了什么。
我使用健身来选择最好的"大脑"然后将它们交叉(重现)。
目前它只是试图进化大脑"返回数字。适应度是返回数字和原始数字之间差异的函数。
new_array = build_array(capacity)
new_array[0:len(self._array)] = self._array
self._array = new_array
我需要改进/改变什么?
这是控制台日志:
"use strict";
function sigmoid(x) {
return 1 / (1 + Math.E ** -x);
}
function random(min, max) {
return (max - min) * Math.random() + min
}
function toss() {
return random(-1, 1)
}
function Brain(inputs, hiddens, outputs) {
this.structure = [...arguments];
if (this.structure.length < 3) throw "Invalid layer count";
this.layers = [];
this.layers[this.structure.length - 1] = {
nodes: []
};
for (var i = this.structure.length - 1; i--;) this.layers[i] = {
bias: toss(),
nodes: []
};
for (var i = 1; i < this.structure.length; i++) {
var nodes = this.layers[i].nodes;;
for (var j = this.structure[i]; j--;) {
var node = nodes[j] = {
weights: []
};
for (var k = this.structure[i - 1]; k--;) node.weights[k] = toss();
}
};
}
Brain.prototype.compute = function() {
if (arguments[0] !== this.structure[0]) throw "Invalid input count";
for (var i = arguments.length; i--;) this.layers[0].nodes[i] = {
value: arguments[i]
};
for (var i = 1; i < this.layers.length - 1; i++) {
var layer = this.layers[i];
var feeder = this.layers[i - 1];
for (var j = layer.nodes.length; j--;) {
var node = layer.nodes[j];
var dot = 0;
for (var k = node.weights.length; k--;) dot += node.weights[k] * feeder.nodes[k].value;
node.value = sigmoid(dot + feeder.bias);
}
}
var result = [];
var layer = this.layers[this.layers.length - 1];
var feeder = this.layers[this.layers.length - 2];
for (var j = layer.nodes.length; j--;) {
var node = layer.nodes[j];
var dot = 0;
for (var k = node.weights.length; k--;) dot += node.weights[k] * feeder.nodes[k].value;
result[j] = sigmoid(dot + feeder.bias);
}
return result;
}
Brain.prototype.cross = function() {
var newBrain = new Brain(...this.structure);
var brains = [this, ...arguments];
for (var i = 1; i < newBrain.layers.length; i++) {
var layer = newBrain.layers[i];
for (var j = layer.nodes.length; j--;) {
var node = layer.nodes[j];
for (var k = node.weights.length; k--;) node.weights[k] = mutate() ||
brains[Math.floor(Math.random() * brains.length)]
.layers[i].nodes[j].weights[k];
}
}
for (var i = newBrain.layers.length - 1; i--;) newBrain.layers[i].bias = mutate() ||
brains[Math.floor(Math.random() * brains.length)]
.layers[i].bias;
return newBrain;
}
function mutate(key, nodes) {
if (Math.random() > 0.05) return toss();
}
var brain = new Brain(1, 5, 1);
var newBrain = new Brain(1, 5, 1)
var result = brain.compute(1);
var cross = brain.cross(newBrain);
var brains = [];
for (var node = 45; node--;) brains.push({
brain: new Brain(1, 5, 4, 3, 2, 1)
});
for (var count = 1000000; count--;) {
brains.push({
brain: new Brain(1, 5, 4, 3, 2, 1)
});
for (var node = brains.length; node--;) {
var brain = brains[node];
var number = 1;
var target = number;
brain.fitness = 1 / Math.abs(number - brain.brain.compute(number));
}
brains.sort((a, b) => a.fitness < b.fitness);
if (count % 10000 === 0) console.log(brains.length, brains[0].fitness);
var newBrains = [];
for (var node = 10; node--;)
for (var j = node; j--;) newBrains.push({
brain: brains[node].brain.cross(brains[j].brain)
});
brains = newBrains;
}
console.log(brains);
正如你所看到的,健身似乎是随机的
答案 0 :(得分:-1)
一些建议......
神经网络通常会输入一些与输出有关的输入。我找不到网络的任何输入?如果你不能提出任何好的想法,只需使用XOR问题并尝试解决它。
当检查你的人口是否随着时间的推移变得更好时,不要看每一代人的所有大脑。请记住,您有意创建了一些可能会或可能不会擅长您的任务的随机网络。尝试打印每一代的最高结果,也许是平均分数。在工作遗传算法中,两个值都应该随着时间的推移变得更好(尽管最高分是更重要和更重要的)
(不直接解决您的问题)请勿使用javascript。您可以将当前代码转换为java / c#/ c ++。这些语言的执行速度比JS快。