这个操作系列有名称吗?
Functor f => f (a, b) -> (f a, f b)
Functor f => f (a, b, c) -> (f a, f b, f c)
...
Functor f => f (a, b, ..., z) -> (f a, f b, ..., f z)
他们很容易实现,只是想弄清楚要叫什么。
\fab -> (fst <$> fab, snd <$> fab)
对我而言,它出现在f ~ (x ->)
。
答案 0 :(得分:8)
在您的具体情况f ~ (x ->)
中,我认为可以称之为&#34;权力法律&#34;。
事实上,从理论上讲,将A -> B
作为权力B^A
是很常见的。对类型(A,B)
通常也会写为产品(A*B)
。
然后你的第一部法律写成
(A*B)^C = A^C * B^C
并且是经典类型同构。这很容易以明显的方式推广到元组。
在一般情况下,f
是一个任意的仿函数,我现在除了&#34;发布&#34;之外别无其他。
答案 1 :(得分:2)
There is Data.Distributive
which is the dual of Data.Traversable
. It provides the distribute
function which can be specialized e.g. as f (Stream a) -> Stream (f a)
or distribute :: f (Vec n a) -> Vec n (f a)
. The latter example is a homogeneous variant of your family of functions.
But we can generalize Data.Distributive
a bit just like lenses generalize functors. Enter Colens
:
type Colens s t a b = forall f. Functor f => (f a -> b) -> f s -> t
Here is the mirror of Control.Lens.Each
:
class Coeach s t a b | s -> a, t -> b, s b -> t, t a -> s where
coeach :: Colens s t a b
instance (a~a', b~b') => Coeach (a,a') (b,b') a b where
coeach f p = (f $ fst <$> p, f $ snd <$> p)
instance (a~a2, a~a3, b~b2, b~b3) => Coeach (a,a2,a3) (b,b2,b3) a b where
coeach f p = ...
...
就像each
一样,我们可以迭代元组
each_id1 :: Applicative f => (f a, f a) -> f (a, a)
each_id1 = each id
each_id2 :: Applicative f => (f a, f a, f a) -> f (a, a, a)
each_id2 = each id
coeach
我们可以对元组进行讨论:
coeach_id1 :: Functor f => f (a, a) -> (f a, f a)
coeach_id1 = coeach id
coeach_id2 :: Functor f => f (a, a, a) -> (f a, f a, f a)
coeach_id2 = coeach id
但这仍然是同质的。我不太了解lens
,所以不能说是否存在异类each
和相应的coeach
。