https://kwotsin.github.io/tech/2017/02/11/transfer-learning.html 我按照上面的链接制作了一个图像分类器
培训代码:
slim = tf.contrib.slim
dataset_dir = './data'
log_dir = './log'
checkpoint_file = './inception_resnet_v2_2016_08_30.ckpt'
image_size = 299
num_classes = 21
vlabels_file = './labels.txt'
labels = open(labels_file, 'r')
labels_to_name = {}
for line in labels:
label, string_name = line.split(':')
string_name = string_name[:-1]
labels_to_name[int(label)] = string_name
file_pattern = 'test_%s_*.tfrecord'
items_to_descriptions = {
'image': 'A 3-channel RGB coloured product image',
'label': 'A label that from 20 labels'
}
num_epochs = 10
batch_size = 16
initial_learning_rate = 0.001
learning_rate_decay_factor = 0.7
num_epochs_before_decay = 4
def get_split(split_name, dataset_dir, file_pattern=file_pattern, file_pattern_for_counting='products'):
if split_name not in ['train', 'validation']:
raise ValueError(
'The split_name %s is not recognized. Please input either train or validation as the split_name' % (
split_name))
file_pattern_path = os.path.join(dataset_dir, file_pattern % (split_name))
num_samples = 0
file_pattern_for_counting = file_pattern_for_counting + '_' + split_name
tfrecords_to_count = [os.path.join(dataset_dir, file) for file in os.listdir(dataset_dir) if
file.startswith(file_pattern_for_counting)]
for tfrecord_file in tfrecords_to_count:
for record in tf.python_io.tf_record_iterator(tfrecord_file):
num_samples += 1
test = num_samples
reader = tf.TFRecordReader
keys_to_features = {
'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
'image/format': tf.FixedLenFeature((), tf.string, default_value='jpg'),
'image/class/label': tf.FixedLenFeature(
[], tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
}
items_to_handlers = {
'image': slim.tfexample_decoder.Image(),
'label': slim.tfexample_decoder.Tensor('image/class/label'),
}
decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)
labels_to_name_dict = labels_to_name
dataset = slim.dataset.Dataset(
data_sources=file_pattern_path,
decoder=decoder,
reader=reader,
num_readers=4,
num_samples=num_samples,
num_classes=num_classes,
labels_to_name=labels_to_name_dict,
items_to_descriptions=items_to_descriptions)
return dataset
def load_batch(dataset, batch_size, height=image_size, width=image_size, is_training=True):
'''
Loads a batch for training.
INPUTS:
- dataset(Dataset): a Dataset class object that is created from the get_split function
- batch_size(int): determines how big of a batch to train
- height(int): the height of the image to resize to during preprocessing
- width(int): the width of the image to resize to during preprocessing
- is_training(bool): to determine whether to perform a training or evaluation preprocessing
OUTPUTS:
- images(Tensor): a Tensor of the shape (batch_size, height, width, channels) that contain one batch of images
- labels(Tensor): the batch's labels with the shape (batch_size,) (requires one_hot_encoding).
'''
# First create the data_provider object
data_provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
common_queue_capacity=24 + 3 * batch_size,
common_queue_min=24)
# Obtain the raw image using the get method
raw_image, label = data_provider.get(['image', 'label'])
# Perform the correct preprocessing for this image depending if it is training or evaluating
image = inception_preprocessing.preprocess_image(raw_image, height, width, is_training)
# As for the raw images, we just do a simple reshape to batch it up
raw_image = tf.expand_dims(raw_image, 0)
raw_image = tf.image.resize_nearest_neighbor(raw_image, [height, width])
raw_image = tf.squeeze(raw_image)
# Batch up the image by enqueing the tensors internally in a FIFO queue and dequeueing many elements with tf.train.batch.
images, raw_images, labels = tf.train.batch(
[image, raw_image, label],
batch_size=batch_size,
num_threads=4,
capacity=4 * batch_size,
allow_smaller_final_batch=True)
return images, raw_images, labels
def run():
# Create the log directory here. Must be done here otherwise import will activate this unneededly.
if not os.path.exists(log_dir):
os.mkdir(log_dir)
# ======================= TRAINING PROCESS =========================
# Now we start to construct the graph and build our model
with tf.Graph().as_default() as graph:
tf.logging.set_verbosity(tf.logging.INFO) # Set the verbosity to INFO level
# First create the dataset and load one batch
dataset = get_split('train', dataset_dir, file_pattern=file_pattern)
images, _, labels = load_batch(dataset, batch_size=batch_size)
# Know the number steps to take before decaying the learning rate and batches per epoch
num_batches_per_epoch = int(dataset.num_samples / batch_size)
num_steps_per_epoch = num_batches_per_epoch # Because one step is one batch processed
decay_steps = int(num_epochs_before_decay * num_steps_per_epoch)
# Create the model inference
with slim.arg_scope(inception_resnet_v2_arg_scope()):
logits, end_points = inception_resnet_v2(images, num_classes=dataset.num_classes, is_training=True)
# Define the scopes that you want to exclude for restoration
exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']
variables_to_restore = slim.get_variables_to_restore(exclude=exclude)
# Perform one-hot-encoding of the labels (Try one-hot-encoding within the load_batch function!)
one_hot_labels = slim.one_hot_encoding(labels, dataset.num_classes)
# Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits but enhanced with checks
loss = tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels, logits=logits)
total_loss = tf.losses.get_total_loss() # obtain the regularization losses as well
# Create the global step for monitoring the learning_rate and training.
global_step = get_or_create_global_step()
# Define your exponentially decaying learning rate
lr = tf.train.exponential_decay(
learning_rate=initial_learning_rate,
global_step=global_step,
decay_steps=decay_steps,
decay_rate=learning_rate_decay_factor,
staircase=True)
# Now we can define the optimizer that takes on the learning rate
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
# Create the train_op.
train_op = slim.learning.create_train_op(total_loss, optimizer)
# State the metrics that you want to predict. We get a predictions that is not one_hot_encoded.
predictions = tf.argmax(end_points['Predictions'], 1)
probabilities = end_points['Predictions']
accuracy, accuracy_update = tf.contrib.metrics.streaming_accuracy(predictions, labels)
metrics_op = tf.group(accuracy_update, probabilities)
# Now finally create all the summaries you need to monitor and group them into one summary op.
tf.summary.scalar('losses/Total_Loss', total_loss)
tf.summary.scalar('accuracy', accuracy)
tf.summary.scalar('learning_rate', lr)
my_summary_op = tf.summary.merge_all()
# Now we need to create a training step function that runs both the train_op, metrics_op and updates the global_step concurrently.
def train_step(sess, train_op, global_step):
'''
Simply runs a session for the three arguments provided and gives a logging on the time elapsed for each global step
'''
# Check the time for each sess run
start_time = time.time()
total_loss, global_step_count, _ = sess.run([train_op, global_step, metrics_op])
time_elapsed = time.time() - start_time
# Run the logging to print some results
logging.info('global step %s: loss: %.4f (%.2f sec/step)', global_step_count, total_loss, time_elapsed)
return total_loss, global_step_count
# Now we create a saver function that actually restores the variables from a checkpoint file in a sess
saver = tf.train.Saver(variables_to_restore)
def restore_fn(sess):
return saver.restore(sess, checkpoint_file)
# Define your supervisor for running a managed session. Do not run the summary_op automatically or else it will consume too much memory
sv = tf.train.Supervisor(logdir=log_dir, summary_op=None, init_fn=restore_fn)
# Run the managed session
with sv.managed_session() as sess:
for step in xrange(num_steps_per_epoch * num_epochs):
# At the start of every epoch, show the vital information:
if step % num_batches_per_epoch == 0:
logging.info('Epoch %s/%s', step / num_batches_per_epoch + 1, num_epochs)
learning_rate_value, accuracy_value = sess.run([lr, accuracy])
logging.info('Current Learning Rate: %s', learning_rate_value)
logging.info('Current Streaming Accuracy: %s', accuracy_value)
# optionally, print your logits and predictions for a sanity check that things are going fine.
logits_value, probabilities_value, predictions_value, labels_value = sess.run(
[logits, probabilities, predictions, labels])
print 'logits: \n', logits_value
print 'Probabilities: \n', probabilities_value
print 'predictions: \n', predictions_value
print 'Labels:\n:', labels_value
# Log the summaries every 10 step.
if step % 10 == 0:
loss, _ = train_step(sess, train_op, sv.global_step)
summaries = sess.run(my_summary_op)
sv.summary_computed(sess, summaries)
# If not, simply run the training step
else:
loss, _ = train_step(sess, train_op, sv.global_step)
# We log the final training loss and accuracy
logging.info('Final Loss: %s', loss)
logging.info('Final Accuracy: %s', sess.run(accuracy))
# Once all the training has been done, save the log files and checkpoint model
logging.info('Finished training! Saving model to disk now.')
sv.saver.save(sess, sv.save_path, global_step=sv.global_step)
此代码似乎有效,我已经对一些样本数据进行了培训,并且我的准确率达到了94%
评估代码:
log_dir = './log'
log_eval = './log_eval_test'
dataset_dir = './data'
batch_size = 10
num_epochs = 1
checkpoint_file = tf.train.latest_checkpoint('./')
def run():
if not os.path.exists(log_eval):
os.mkdir(log_eval)
with tf.Graph().as_default() as graph:
tf.logging.set_verbosity(tf.logging.INFO)
dataset = get_split('train', dataset_dir)
images, raw_images, labels = load_batch(dataset, batch_size=batch_size, is_training=False)
num_batches_per_epoch = dataset.num_samples / batch_size
num_steps_per_epoch = num_batches_per_epoch
with slim.arg_scope(inception_resnet_v2_arg_scope()):
logits, end_points = inception_resnet_v2(images, num_classes=dataset.num_classes, is_training=False)
variables_to_restore = slim.get_variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
def restore_fn(sess):
return saver.restore(sess, checkpoint_file)
predictions = tf.argmax(end_points['Predictions'], 1)
accuracy, accuracy_update = tf.contrib.metrics.streaming_accuracy(predictions, labels)
metrics_op = tf.group(accuracy_update)
global_step = get_or_create_global_step()
global_step_op = tf.assign(global_step, global_step + 1)
def eval_step(sess, metrics_op, global_step):
'''
Simply takes in a session, runs the metrics op and some logging information.
'''
start_time = time.time()
_, global_step_count, accuracy_value = sess.run([metrics_op, global_step_op, accuracy])
time_elapsed = time.time() - start_time
logging.info('Global Step %s: Streaming Accuracy: %.4f (%.2f sec/step)', global_step_count, accuracy_value,
time_elapsed)
return accuracy_value
tf.summary.scalar('Validation_Accuracy', accuracy)
my_summary_op = tf.summary.merge_all()
sv = tf.train.Supervisor(logdir=log_eval, summary_op=None, saver=None, init_fn=restore_fn)
with sv.managed_session() as sess:
for step in xrange(num_steps_per_epoch * num_epochs):
sess.run(sv.global_step)
if step % num_batches_per_epoch == 0:
logging.info('Epoch: %s/%s', step / num_batches_per_epoch + 1, num_epochs)
logging.info('Current Streaming Accuracy: %.4f', sess.run(accuracy))
if step % 10 == 0:
eval_step(sess, metrics_op=metrics_op, global_step=sv.global_step)
summaries = sess.run(my_summary_op)
sv.summary_computed(sess, summaries)
else:
eval_step(sess, metrics_op=metrics_op, global_step=sv.global_step)
logging.info('Final Streaming Accuracy: %.4f', sess.run(accuracy))
raw_images, labels, predictions = sess.run([raw_images, labels, predictions])
for i in range(10):
image, label, prediction = raw_images[i], labels[i], predictions[i]
prediction_name, label_name = dataset.labels_to_name[prediction], dataset.labels_to_name[label]
text = 'Prediction: %s \n Ground Truth: %s' % (prediction_name, label_name)
img_plot = plt.imshow(image)
plt.title(text)
img_plot.axes.get_yaxis().set_ticks([])
img_plot.axes.get_xaxis().set_ticks([])
plt.show()
logging.info(
'Model evaluation has completed! Visit TensorBoard for more information regarding your evaluation.')
因此,在训练模型并获得94%的准确度后,我试图评估模型。在评估时,我总是获得0-1%的准确率。我调查了这一点,却发现它每次都在预测同一个班级
labels: [7, 11, 5, 1, 20, 0, 18, 1, 0, 7]
predictions: [10, 10, 10, 10, 10, 10, 10, 10, 10, 10]
任何人都可以在我可能出错的地方提供帮助吗?
编辑:
TensorBoard准确性和损失形式培训
来自评估的TensorBoard准确度
编辑:
我仍然无法解决这个问题。我认为在eval脚本中恢复图形可能存在问题,所以我尝试使用它来恢复模型
saver = tf.train.import_meta_graph('/log/model.ckpt.meta')
def restore_fn(sess):
return saver.restore(sess, checkpoint_file)
而不是
variables_to_restore = slim.get_variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
def restore_fn(sess):
return saver.restore(sess, checkpoint_file)
只是需要很长时间才能开始并最终出现错误。然后我尝试在保护程序(saver = tf.train.Saver(variables_to_restore, write_version=saver_pb2.SaveDef.V1)
)中使用编写器的V1并重新训练,并且根本无法加载此检查点,因为它说变量丢失了。
我还尝试使用它训练过的相同数据来运行我的eval脚本,看看这是否会给出不同的结果,但我得到了相同的结果。
最后,我重新克隆了网址中的repo并使用教程中的相同数据集运行了一列火车,当我进行评估时,即使在训练结束后达到84%,我也能获得0-3%的准确率。此外,我的检查点必须具有正确的信息,因为当我重新开始训练时,准确性将从它离开的地方继续。当我恢复模型时,感觉我没有正确地做某事。非常感谢任何关于此的建议,因为我现在处于死胡同:(
答案 0 :(得分:2)
我终于设法解决了我的问题。这听起来很奇怪,但加载模型时的is_training参数需要在训练脚本和eval脚本上设置为False,或者两者都需要为True。这是因为当is_training为False时,BatchNormalisation将被删除。
这可以通过tensorflow / tensorflow中的这个线程验证github https://github.com/tensorflow/models/issues/391#issuecomment-247392028
此外,这款超薄的Jupyter笔记本https://github.com/tensorflow/models/blob/master/slim/slim_walkthrough.ipynb enter link description here
如果您滚动到页面末尾,标题为'将微调模型应用于某些图像'您将看到一个代码块,显示如何重新加载经过精心调整的预训练模型。当他们加载模型时,您将看到此行,注释解释
# Create the model, use the default arg scope to configure the batch norm parameters.
with slim.arg_scope(inception.inception_v1_arg_scope()):
logits, _ = inception.inception_v1(images,
num_classes=dataset.num_classes, is_training=True)
即使这是Inception_v1,原理也是一样的,这表明将两者设置为False或True都可以,但是你不能设置一个不同于另一个而不编辑苗条中的inception_resnet_v2.py代码
答案 1 :(得分:0)
首先,如果我理解正确,你想做21级分类器。 也许您的代码是正确的,但您没有正确分割数据。如果所有课程都有代表,您应该检查培训数据。
如果您的训练数据仅来自一个班级(也许您只需要一个非常小的数据样本进行实验,而您只从第10班开始拍摄图像),您将获得类似的结果,在训练中获得高精度,但在预测时,分类器仅预测10级,测试精度几乎为零
答案 2 :(得分:0)
实际上,此问题是由BN更新方法引起的。 默认情况下,tf不会更新mean和var参数。
摘自官方API文档:
注意:训练时,需要更新moving_mean和moving_variance。默认情况下,更新操作位于tf.GraphKeys.UPDATE_OPS中,因此需要将它们作为依赖项添加到train_op中。另外,请确保在获取update_ops集合之前添加所有batch_normalization ops。否则,update_ops将为空,并且训练/推论将无法正常工作。
解决方案:
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss)