我正在阅读TensorFlow教程代码mnist_deep.py
并保存图表。
范围fc1
的输出应具有形状[-1, 1024]
。但它是TensorBoard图中的2 tensors
。
" n张量"的含义是什么?在TensorBoard图中?
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
with tf.name_scope('fc1'):
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of
# features.
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
答案 0 :(得分:3)
这应该意味着Relu的输出张量在Droupout节点中使用两次。如果您尝试扩展它,您应该看到输入进入两个不同的节点。