如何根据pandas中的列值对数据进行分类?

时间:2017-09-10 09:05:08

标签: python pandas dataframe categories

假设我有这个数据框:

raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 
        'payout': [.1, .15, .2, .3, 1.2, 1.3, 1.45, 2, 2.04, 3.011, 3.45, 1], 
        'name': ['Miller', 'Jacobson', 'Ali', 'Milner', 'Cooze', 'Jacon', 'Ryaner', 'Sone', 'Sloan', 'Piger', 'Riani', 'Ali'], 
        'preTestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],
        'postTestScore': [25, 94, 57, 62, 70, 25, 94, 57, 62, 70, 62, 70]}
df = pd.DataFrame(raw_data, columns = ['regiment', 'payout', 'name', 'preTestScore', 'postTestScore'])

现在,我想根据列"支付"来构建这些类别:

Cat1 : 0 <= x <= 1
Cat2 : 1 <  x <= 2
Cat3 : 2 <  x <= 3
Cat4 : 3 <  x <= 4

并构建列postTestscore

的总和

我是这样做的,使用布尔索引:

df.loc[(df['payout'] > 0) & (df['payout'] <= 1), 'postTestScore'].sum()
df.loc[(df['payout'] > 1) & (df['payout'] <= 2), 'postTestScore'].sum()
etc...

它确实有效,但有没有人知道这个更简洁(pythonic)的解决方案?

2 个答案:

答案 0 :(得分:2)

使用compile 'org.apache.httpcomponents:httpclient:jar:4.5.2' compile 'org.apache.httpcomponents:httpcore:4.4.1'

尝试pd.cut
groupby

答案 1 :(得分:1)

cut创建类别,然后使用汇总金额groupby创建

bins = [0,1,2,3,4]
labels=['Cat{}'.format(x) for x in range(1, len(bins))]
binned = pd.cut(df['payout'], bins=bins, labels=labels)
print (binned)
0     Cat1
1     Cat1
2     Cat1
3     Cat1
4     Cat2
5     Cat2
6     Cat2
7     Cat2
8     Cat3
9     Cat4
10    Cat4
11    Cat1
Name: payout, dtype: category
Categories (4, object): [Cat1 < Cat2 < Cat3 < Cat4]

df1 = df.groupby(binned)['postTestScore'].sum().reset_index()
print (df1)
  payout  postTestScore
0   Cat1            308
1   Cat2            246
2   Cat3             62
3   Cat4            132

同一行解决方案:

df1 = df.groupby(pd.cut(df['payout'], 
                        bins=[0,1,2,3,4], 
                        labels=['Cat1','Cat2','Cat3','Cat4']))['postTestScore'].sum()
print (df1)

payout
Cat1    308
Cat2    246
Cat3     62
Cat4    132
Name: postTestScore, dtype: int64

使用numpy的另一个非常快速的解决方案:

labs = ['Cat{}'.format(x) for x in range(len(bins))]
a = np.array(labs)[np.array(bins).searchsorted(df['payout'].values)]
print (a)

['Cat1' 'Cat1' 'Cat1' 'Cat1' 'Cat2' 'Cat2' 'Cat2' 'Cat2' 'Cat3' 'Cat4'
 'Cat4' 'Cat1']

df1 = df.groupby(a)['postTestScore'].sum().rename_axis('cats').reset_index()
print (df1)
   cats  postTestScore
0  Cat1            308
1  Cat2            246
2  Cat3             62
3  Cat4            132