我正在使用R包randomForest来创建一个分为三组的模型。
model = randomForest(formula = condition ~ ., data = train, ntree = 2000,
mtry = bestm, importance = TRUE, proximity = TRUE)
Type of random forest: classification
Number of trees: 2000
No. of variables tried at each split: 3
OOB estimate of error rate: 5.71%
Confusion matrix:
lethal mock resistant class.error
lethal 20 1 0 0.04761905
mock 1 37 0 0.02631579
resistant 2 0 9 0.18181818
我尝试过几个库。例如,使用ROCR,您不能进行三种分类,只能进行两种分类。看哪:
pred=prediction(predictions,train$condition)
Error in prediction(predictions, train$condition) :
Number of classes is not equal to 2.
ROCR currently supports only evaluation of binary classification
tasks.
来自模型$ votes的数据看起来像这样:
lethal mock resistant
3 0.04514364 0.952120383 0.002735978
89 0.32394366 0.147887324 0.528169014
16 0.02564103 0.973009447 0.001349528
110 0.55614973 0.433155080 0.010695187
59 0.06685633 0.903271693 0.029871977
43 0.13424658 0.865753425 0.000000000
41 0.82987552 0.033195021 0.136929461
86 0.32705249 0.468371467 0.204576043
87 0.37704918 0.341530055 0.281420765
........
我可以使用pROC包以这种方式获得一些非常难看的ROC图:
predictions <- as.numeric(predict(model, test, type = 'response'))
roc.multi <- multiclass.roc(test$condition, predictions,
percent=TRUE)
rs <- roc.multi[['rocs']]
plot.roc(rs[[2]])
sapply(2:length(rs),function(i) lines.roc(rs[[i]],col=i))
虽然没有办法平滑这些线条,因为它们不是一条曲线,因为它们各有4个左右。
我需要一种方法为这个模型绘制一个漂亮的平滑ROC曲线,但我似乎无法找到一个。有谁知道一个好的方法?非常感谢提前!
答案 0 :(得分:2)
我在这里看到两个问题 1) ROC曲线适用于二元分类器,因此您应该在一系列二进制问题中转换性能评估。我在下面展示如何做到这一点。 2)当您预测测试集时,您应该获得每个观察的概率属于您的每个类(而不仅仅是预测类)。这将允许您绘制漂亮的ROC曲线。这是代码
#load libraries
library(randomForest)
library(pROC)
# generate some random data
set.seed(1111)
train <- data.frame(condition = sample(c("mock", "lethal", "resist"), replace = T, size = 1000))
train$feat01 <- sapply(train$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
train$feat02 <- sapply(train$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
train$feat03 <- sapply(train$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
head(train)
test <- data.frame(condition = sample(c("mock", "lethal", "resist"), replace = T, size = 1000))
test$feat01 <- sapply(test$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
test$feat02 <- sapply(test$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
test$feat03 <- sapply(test$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
head(test)
现在我们有了一些数据,让我们像你一样训练一个随机森林模型
# model
model <- randomForest(formula = condition ~ ., data = train, ntree = 10, maxnodes= 100, norm.votes = F)
接下来,该模型用于预测测试数据。但是,您应该在这里要求type="prob"
。
# predict test set, get probs instead of response
predictions <- as.data.frame(predict(model, test, type = "prob"))
由于您有概率,因此请使用它们来获得最可能的类。
# predict class and then attach test class
predictions$predict <- names(predictions)[1:3][apply(predictions[,1:3], 1, which.max)]
predictions$observed <- test$condition
head(predictions)
lethal mock resist predict observed
1 0.0 0.0 1.0 resist resist
2 0.0 0.6 0.4 mock mock
3 1.0 0.0 0.0 lethal mock
4 0.0 0.0 1.0 resist resist
5 0.0 1.0 0.0 mock mock
6 0.7 0.3 0.0 lethal mock
现在,让我们看看如何绘制ROC曲线。对于每个类,将多类问题转换为二进制问题。另外,调用roc()
函数指定2个参数: i)观察到的类和 ii)类概率(而不是预测类)。
# 1 ROC curve, mock vs non mock
roc.mock <- roc(ifelse(predictions$observed=="mock", "mock", "non-mock"), as.numeric(predictions$mock))
plot(roc.mock, col = "gray60")
# others
roc.lethal <- roc(ifelse(predictions$observed=="lethal", "lethal", "non-lethal"), as.numeric(predictions$mock))
roc.resist <- roc(ifelse(predictions$observed=="resist", "resist", "non-resist"), as.numeric(predictions$mock))
lines(roc.lethal, col = "blue")
lines(roc.resist, col = "red")
完成。这是结果。当然,测试集中的观察越多,曲线就越平滑。