我有一个非常大的numpy数组(145000行* 550 cols)。我想在子阵列中创建滚动切片。我尝试用函数实现它。函数lagged_vals
的行为符合预期,但np.lib.stride_tricks
的行为与我想要的不同 -
def lagged_vals(series,l):
# Garbage implementation but still right
return np.concatenate([[x[i:i+l] for i in range(x.shape[0]) if i+l <= x.shape[0]] for x in series]
,axis = 0)
# Sample 2D numpy array
something = np.array([[1,2,2,3],[2,2,3,3]])
lagged_vals(something,2) # Works as expected
# array([[1, 2],
# [2, 2],
# [2, 3],
# [2, 2],
# [2, 3],
# [3, 3]])
np.lib.stride_tricks.as_strided(something,
(something.shape[0]*something.shape[1],2),
(8,8))
# array([[1, 2],
# [2, 2],
# [2, 3],
# [3, 2], <--- across subarray stride, which I do not want
# [2, 2],
# [2, 3],
# [3, 3])
如何删除np.lib.stride_tricks
实施中的特定行?如何为一个大的numpy数组缩放这个交叉数组步幅去除?
答案 0 :(得分:3)
当然,这可以通过np.lib.stride_tricks.as_strided
实现。这是一种方式 -
from numpy.lib.stride_tricks import as_strided
L = 2 # window length
shp = a.shape
strd = a.strides
out_shp = shp[0],shp[1]-L+1,L
out_strd = strd + (strd[1],)
out = as_strided(a, out_shp, out_strd).reshape(-1,L)
示例输入,输出 -
In [177]: a
Out[177]:
array([[0, 1, 2, 3],
[4, 5, 6, 7]])
In [178]: out
Out[178]:
array([[0, 1],
[1, 2],
[2, 3],
[4, 5],
[5, 6],
[6, 7]])
请注意,重塑的最后一步迫使其在那里制作副本。但如果我们需要最终输出为2D
,则无法避免这种情况。如果我们对3D
输出没问题,请跳过该重新整形,从而获得view
,如示例案例所示 -
In [181]: np.shares_memory(a, out)
Out[181]: False
In [182]: as_strided(a, out_shp, out_strd)
Out[182]:
array([[[0, 1],
[1, 2],
[2, 3]],
[[4, 5],
[5, 6],
[6, 7]]])
In [183]: np.shares_memory(a, as_strided(a, out_shp, out_strd) )
Out[183]: True