我一直在研究Java HashMap源代码,它的一部分决定了放置一个对象的内容,并在Java 7(8)中看到了与Java 6相比的变化。 另外,我进行了大量的实验,两个表达式都有相同的结果:
hash % n
and
hash & (n - 1)
where n - the array length that must be power of 2.
我无法弄清楚为什么会这样?是否有任何定理或某些数学定律证明这些陈述是平等的?基本上我想理解推论并证明这两个陈述的等价性。
PS。如果n不是2数的幂,则等价性会立即中断。
答案 0 :(得分:4)
如果n是2的幂,则表示其二进制表示为10000....
,
对于这个问题,n-1是1111111...
,只有一个数字。
这意味着使用(n-1)
的二进制& -ing仅保留k
n-1
设置的n = 8: 1000, n-1 = 7: 111
中的位数。
示例k = 201: 11001001
& -ing例如k % n = k & (n-1) = 11001001 & 111 = 001 = 1
&
。
% - 使用2的幂意味着在二进制中你只需去掉上面(包括)唯一设置位的所有内容:对于n = 8,这意味着剥离所有内容(包括)第4位。而这正是& -ing所做的。
副作用是使用hash & (n - 1)
是可交换的:(n - 1) & hash
相当于%
,这对namespace Essentia = essentia;
namespace Essentia::Streaming = essentia::streaming;
来说是不正确的,许多地方的jdk源代码都使用了以后,例如in getNode
答案 1 :(得分:3)
考虑(n - 1)
中的位如果n
是2的幂(或((1 << i) - 1)
,如果您想简化n
上的约束):
如果n
是16(= 1 << 4)
,那么n - 1
是15,15
和16
的位代表(如32-位int
s)是:
1 = 00000000000000000000000000000001 // Shift by 4 to get...
16 = 00000000000000000000000000010000 // Subtract 1 to get...
15 = 00000000000000000000000000001111
所以只有最低的4位在15中设置。如果&
使用另一个int,它只允许在结果中设置该数字的最后4位中的位,因此值将为只能在0-15范围内,所以它就像在做% 16
。
但请注意,这种等价不适用于负的第一个操作数:
System.out.println(-1 % 2); // -1
System.out.println(-1 & (2-1)); // 1
答案 2 :(得分:2)
整数/
和%
的算术规则是:
x*(y/x) + (y%x) = y
负面hash
-4和正面n
8
8*0 + (-4%8) = -4
因此modulo维持标志。
-4 % 8 = -4
-4 & 7 = 4
或者:
int t = hash%n;
if (t < 0) {
t += n;
}
assert t == (hash & (n-1));
因此,早期的%n
hash
的java必须是积极的。
现在哈希可能是负面的,更稳固和更好的散列。
因此,这是java源代码中这种微妙变化的合理原因。
<强> 背景: 强>
2 n 是 1 ,然后是n-1 0 (二进制)。 2 n - 1是n-1 1 s。
因此,n为2的正幂,并且为正数h:
h % n == h & (n-1)
另一种用法是计算int中的位数。 Integer类就是这样一个函数。
int bits = 0;
while (x != 0) {
x &= x - 1;
++bits;
}