将每列除以每个其他列,并从结果中创建新的数据框

时间:2017-09-07 18:36:00

标签: python pandas dataframe

在一个pandas df(来自csv文件的数据)我试图通过将每列除以每隔一列来添加新列(比率)。

到目前为止,我一直处于将所有列除以第一列的过程中(希望稍后重复该过程)。

angular.min.js:sourcemap:119 TypeError: Cannot read property 'c' of undefined

我从处理类似问题的帖子中获取此代码。

  

pandas dataframe create new columns and fill with calculated values from same df

我收到以下错误消息:

ratio_df = df.join(df.div(df['Hv10'], axis=0), rsuffix='_new_ratio')

我不确定为什么我收到此错误消息,因为我将每列除以另一列(因此维度应该相同)

我做错了什么?

是否有一步过程来生成所有这些新的比率列?

我希望我的描述清楚。

谢谢!

1 个答案:

答案 0 :(得分:1)

你走在正确的轨道上,但是连接不是正确的操作。您应该可以使用pd.concat执行此操作。

pd.concat([df.div(df[col], axis=0) for col in df.columns], axis=1) # each column with every other column

如果您想避免将列与自身分开,可以使用df.columns.difference

pd.concat([df[df.columns.difference([col])].div(df[col], axis=0) \
                                       for col in df.columns], axis=1)

您还可以使用df.add_suffix('_new_ratio')为列添加后缀。

MCVE:

import pandas as pd
import numpy as np

np.random.seed([3, 14])
df = pd.DataFrame(np.random.randn(10, 3), columns=list('ABC'))

df

          A         B         C
0 -0.602923 -0.402655  0.302329
1 -0.524349  0.543843  0.013135
2 -0.326498  1.385076 -0.132454
3 -0.407863  1.302895 -0.604236
4 -0.243362 -0.211261 -2.056621
5  0.517868 -0.040749 -1.051875
6  0.607092 -2.230437 -0.610389
7  0.223345  0.841994 -1.564391
8  0.031653  0.655489 -0.288834
9 -0.467438  0.119117  1.519430

df_new = pd.concat([df[df.columns.difference([col])].div(df[col], axis=0)\
                           .add_suffix('_n_r') for col in df.columns], axis=1)
df_new

       B_n_r     C_n_r      A_n_r      C_n_r      A_n_r      B_n_r
0   0.667838 -0.501438   1.497369  -0.750838  -1.994263  -1.331845
1  -1.037176 -0.025050  -0.964156   0.024152 -39.919620  41.403685
2  -4.242213  0.405682  -0.235726  -0.095630   2.464987 -10.457000
3  -3.194442  1.481468  -0.313044  -0.463764   0.675006  -2.156269
4   0.868095  8.450867   1.151948   9.734958   0.118331   0.102723
5  -0.078686 -2.031166 -12.708707  25.813488  -0.492328   0.038739
6  -3.673971 -1.005432  -0.272185   0.273663  -0.994598   3.654123
7   3.769924 -7.004363   0.265257  -1.857959  -0.142768  -0.538225
8  20.708576 -9.125012   0.048289  -0.440639  -0.109589  -2.269430
9  -0.254830 -3.250547  -3.924192  12.755771  -0.307641   0.078396