我有一个csv文件。我读了它:
import pandas as pd
data = pd.read_csv('my_data.csv', sep=',')
data.head()
输出如:
id city department sms category
01 khi revenue NaN 0
02 lhr revenue good 1
03 lhr revenue NaN 0
我想删除sms
列为空/ NaN的所有行。什么是有效的方法呢?
答案 0 :(得分:14)
使用带有参数subset
的{{3}}来指定检查NaN
的列:
data = data.dropna(subset=['sms'])
print (data)
id city department sms category
1 2 lhr revenue good 1
dropna
和boolean indexing
的另一种解决方案:
data = data[data['sms'].notnull()]
print (data)
id city department sms category
1 2 lhr revenue good 1
替代notnull
:
print (data.query("sms == sms"))
id city department sms category
1 2 lhr revenue good 1
<强>计时强>
#[300000 rows x 5 columns]
data = pd.concat([data]*100000).reset_index(drop=True)
In [123]: %timeit (data.dropna(subset=['sms']))
100 loops, best of 3: 19.5 ms per loop
In [124]: %timeit (data[data['sms'].notnull()])
100 loops, best of 3: 13.8 ms per loop
In [125]: %timeit (data.query("sms == sms"))
10 loops, best of 3: 23.6 ms per loop
答案 1 :(得分:1)
您可以使用dropna
方法:
data.dropna(axis=0, subset=('sms', ))
有关参数的更多详细信息,请参阅documentation。
当然,有多种方法可以做到这一点,并且存在一些轻微的性能差异。除非性能至关重要,否则我更倾向于使用dropna()
,因为它是最具表现力的。
import pandas as pd
import numpy as np
i = 10000000
# generate dataframe with a few columns
df = pd.DataFrame(dict(
a_number=np.random.randint(0,1e6,size=i),
with_nans=np.random.choice([np.nan, 'good', 'bad', 'ok'], size=i),
letter=np.random.choice(list('abcdefghijklmnop'), size=i))
)
# using notebook %%timeit
a = df.dropna(subset=['with_nans'])
#1.29 s ± 112 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# using notebook %%timeit
b = df[~df.with_nans.isnull()]
#890 ms ± 59.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# using notebook %%timeit
c = df.query('with_nans == with_nans')
#1.71 s ± 100 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)