考虑一个1x3小区library(dplyr)
df <- tibble(
year= c("1997", "1997","1997","1997","1997","1997","1998","1998"),
season= c("W", "W","W","D","D","D","W","W"),
result= c("Y", "Y","N","N","Y","N","N","N")
)
df %>%
mutate(result = recode(result, "Y" = 1L, "N" = 0L)) %>%
group_by(year, season) %>%
summarise(psit_freq = mean(result))
#> # A tibble: 3 x 3
#> # Groups: year [?]
#> year season psit_freq
#> <chr> <chr> <dbl>
#> 1 1997 D 0.3333333
#> 2 1997 W 0.6666667
#> 3 1998 W 0.0000000
:
A
A = { [A1] [A2] [A3] }
A = {[1 2 3; 4 5 6; 7 8 9] [6 5 4; 9 8 7] [1 1 1]}
的结构如下:
Ai
如何绘制所有这些点,以便我们为A1 = [ 1 2 3 %coordinate (x,y,z) of point 1
4 5 6 %coordinate (x,y,z) of point 2
7 8 9 ] %coordinate (x,y,z) of point 3
A2 = [ 6 5 4 %coordinate (x,y,z) of point 4
9 8 7 ] %coordinate (x,y,z) of point 5
A3 = [ 1 1 1 ] %coordinate (x,y,z) of point 6
的所有点使用一种颜色,为A1
的所有点使用另一种颜色,为{{1}的所有点使用其他颜色}}?
一般来说,如果我们有一个1xn的小区,即A2
,怎么办呢?
答案 0 :(得分:1)
连接单元格数组update testplans set tc_name=regex_replace('.*/','',tc_path);
vertically内的所有矩阵。使用jet
或any other colormap为不同的矩阵生成不同的颜色。找到A
内每个矩阵中的点数,以确定每种颜色重复的次数。相应地生成每种颜色的副本数量,最后使用scatter3
绘制这些点。
A
对于给定的newA = vertcat(A{:}); %Concatenating all matrices inside A vertically
colours = jet(numel(A)); %Generating colours to be used
colourtimes = cellfun(@(x) size(x,1),A); %Determining num of times each colour wil be used
colourind = zeros(size(newA,1),1); %Zero matrix with length equals num of points
colourind([1 cumsum(colourtimes(1:end-1))+1]) = 1;
colourind = cumsum(colourind); %Linear indices of colours for newA
scatter3(newA(:,1), newA(:,2), newA(:,3),[], colours(colourind,:),'filled');
,上面的代码产生了这个结果: