我正在使用R中的lme4运行混合效果逻辑回归。
我有一个预测器,它是一个二分类变量。它被编码为1/0并被定义为因子。
我发现随机项拦截与我的预测器的随机项斜率完全相关。因此,我使用以下代码运行一个新模型,在这个模型中它们是不相关的:
m1<-glmer(DV~1+PPTGender+(1|Subject)+(1+PPTGender||Item), data = data, family = "binomial")
然而,输出给出了两个随机斜率项:
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: DV ~ 1 + PPTGender + (1 | Subject) + (1 + PPTGender || Item)
Data: data
AIC BIC logLik deviance df.resid
499.7 526.9 -242.9 485.7 353
Scaled residuals:
Min 1Q Median 3Q Max
-1.7334 -1.0057 0.6312 0.8807 1.3858
Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 6.323e-10 2.514e-05
Item (Intercept) 2.785e-09 5.278e-05
Item.1 PPTGender0 5.229e-01 7.231e-01
PPTGender1 6.889e-03 8.300e-02 -1.00
Number of obs: 360, groups: Subject, 60; Item, 36
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.28229 0.17833 1.583 0.113
PPTGender -0.07718 0.29534 -0.261 0.794
Correlation of Fixed Effects:
(Intr)
PPTGndr -0.635
任何人都能解释为什么会这样吗?
如果我将PPTGender变量重新定义为数字字符变量,如下所示:
data$PPTGender<-as.numeric(as.character(data$PPTGender))
它消失了:
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: DV ~ 1 + PPTGender + (1 | Subject) + (1 + PPTGender || Item)
Data: data
AIC BIC logLik deviance df.resid
500.8 520.2 -245.4 490.8 355
Scaled residuals:
Min 1Q Median 3Q Max
-1.4075 -1.0489 0.7410 0.8472 1.1603
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 3.638e-10 1.907e-05
PairNumber (Intercept) 2.081e-01 4.562e-01
PairNumber.1 PPTGender 1.091e-08 1.044e-04
Number of obs: 360, groups: Subject, 60; Item, 36
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.26056 0.14625 1.782 0.0748 .
PPTGender -0.03009 0.26720 -0.113 0.9103
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr)
PPTGendr -0.397
这只是R中的怪癖吗?后一种方法有什么问题吗?