我有一个关于购买特定产品的人的交易数据(假设它是肥皂),我想知道购买肥皂的强度是如何随时间变化的。强度我将定义为一天中使用的肥皂的平均数量,假设如果一个人再次购买他/她完成他/她以前的肥皂供应。还要考虑每个消费者的离群值(消费者的平均个人+消费者的2 *标准差个人)以及上次购买后的信息减损
目前数据框架如下:
transacrions <- data.frame(Client_ID = c(1, 2, 1, 3, 4, 1, 3, 2, 1),
date = c("2017-01-01", "2017-01-01", "2017-01-02", "2017-01-03", "2017-01-04", "2017-01-05", "2017-01-06", "2017-01-09", "2017-01-10"),
soaps_bought = c(1, 12, 2, 19, 20, 10, 32, 12, 11))
我认为需要特定的步骤才能到达我想要的桌子。第一步是“填写”他/她没有用NA购买的每个消费者的缺失日期:
partial_results <- data.frame(Client_ID = rep(1:4, each = 10),
date = rep(seq(as.Date("2017-01-01"), as.Date("2017-01-10"), by = "day"), 4),
soaps_bought = c(1, 2, NA, NA, 10, NA, NA, NA, NA, 11,
12, NA, NA, NA, NA, NA, NA, NA, 12, NA,
NA, NA, 19, NA, NA, 32, NA, NA, NA, NA,
NA, NA, NA, 20, NA, NA, NA, NA, NA, NA ))
第二步将计算购买之间经过的天数并计算平均使用量。最好还要减少上次购买:
partial_results_II <- data.frame(Client_ID = rep(1:4, each = 10),
date = rep(seq(as.Date("2017-01-01"), as.Date("2017-01-10"), by = "day"), 4),
avg_soaps_bought = c(1/1, 2/3, 2/3, 2/3, 10/5, 10/5, 10/5, 10/5, 10/5, 11/1,
12/8, 12/8, 12/8, 12/8, 12/8, 12/8, 12/8, 12/8, 12/2, 12/2,
NA, NA, 19/3, 19/3, 19/3, 32/5, 32/5, 32/5, 32/5, 32/5,
NA, NA, NA, 20/7, 20/7, 20/7, 20/7, 20/7, 20/7, 20/7 ))
第三步我知道该怎么做 - 它将从长桌转变为宽桌:
desired_results <- dcast(setDT(partial_results_II), Client_ID ~ date, value.var = "avg_soaps_bought")
第四 - 推迟异常值会导致消费者1在最后一次约会(使用11种肥皂): 我计算了每个人的平均值和标准差,甚至检查了哪些是异常值,但我现在不知道如何根据这个来推断观察
desired_results_DF <- data.frame(desired_results)
avg <- rowMeans(desired_results_DF[, -1], na.rm = TRUE)
library(matrixStats)
desired_results_MX <- data.matrix(desired_results_DF[, -1])
sd <- rowSds(desired_results_MX, na.rm = TRUE)
is_ok <- desired_results_DF[, -1] < avg + 2 * sd | desired_results_DF[, -1] > avg - 2 * sd
答案 0 :(得分:3)
你可以这样做:
library(dplyr)
library(tidyr)
transacrions %>%
group_by(Client_ID) %>%
mutate(avg_soaps_bought = soaps_bought/as.numeric(c(diff(as.Date(date)),1))) %>%
complete(date) %>%
fill(avg_soaps_bought) %>% # partial_results_II
select(-soaps_bought) %>%
spread(date,avg_soaps_bought) # final result
# # A tibble: 4 x 9
# # Groups: Client_ID [4]
# Client_ID `2017-01-01` `2017-01-02` `2017-01-03` `2017-01-04` `2017-01-05` `2017-01-06` `2017-01-09` `2017-01-10`
# * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 1 1.0 0.6666667 0.6666667 0.6666667 2.000000 2.0 2 11
# 2 2 1.5 1.5000000 1.5000000 1.5000000 1.500000 1.5 12 12
# 3 3 NA NA 6.3333333 6.3333333 6.333333 32.0 32 32
# 4 4 NA NA NA 20.0000000 20.000000 20.0 20 20
我改变了您的操作顺序,但第一步所需的功能是tidyr::complete