我是基于STL的c ++用法的新手。谁能帮助我如何在打印"顶点路径"中继续使用以下代码?这产生了每个目的地顶点的最短路径得分以及最短路径值。
请找到geeksforgeeks平台的工作代码链接。
http://ide.geeksforgeeks.org/index.php //使用STL set
编程找到Dijkstra的最短路径#include<bits/stdc++.h>
using namespace std;
# define INF 0x3f3f3f3f
// This class represents a directed graph using
// adjacency list representation
class Graph
{
int V; // No. of vertices
// In a weighted graph, we need to store vertex
// and weight pair for every edge
list< pair<int, int> > *adj;
public:
Graph(int V); // Constructor
// function to add an edge to graph
void addEdge(int u, int v, int w);
// prints shortest path from s
void shortestPath(int s);
};
// Allocates memory for adjacency list
Graph::Graph(int V)
{
this->V = V;
adj = new list< pair<int, int> >[V];
}
void Graph::addEdge(int u, int v, int w)
{
adj[u].push_back(make_pair(v, w));
adj[v].push_back(make_pair(u, w));
}
// Prints shortest paths from src to all other vertices
void Graph::shortestPath(int src)
{
// Create a set to store vertices that are being
// prerocessed
set< pair<int, int> > setds;
// Create a vector for distances and initialize all
// distances as infinite (INF)
vector<int> dist(V, INF);
// Insert source itself in Set and initialize its
// distance as 0.
setds.insert(make_pair(0, src));
dist[src] = 0;
/* Looping till all shortest distance are finalized
then setds will become empty */
while (!setds.empty())
{
// The first vertex in Set is the minimum distance
// vertex, extract it from set.
pair<int, int> tmp = *(setds.begin());
setds.erase(setds.begin());
// vertex label is stored in second of pair (it
// has to be done this way to keep the vertices
// sorted distance (distance must be first item
// in pair)
int u = tmp.second;
// 'i' is used to get all adjacent vertices of a vertex
list< pair<int, int> >::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
// Get vertex label and weight of current adjacent
// of u.
int v = (*i).first;
int weight = (*i).second;
// If there is shorter path to v through u.
if (dist[v] > dist[u] + weight)
{
/* If distance of v is not INF then it must be in
our set, so removing it and inserting again
with updated less distance.
Note : We extract only those vertices from Set
for which distance is finalized. So for them,
we would never reach here. */
if (dist[v] != INF)
setds.erase(setds.find(make_pair(dist[v], v)));
// Updating distance of v
dist[v] = dist[u] + weight;
setds.insert(make_pair(dist[v], v));
}
}
}
// Print shortest distances stored in dist[]
printf("Vertex Distance from Source\n");
for (int i = 0; i < V; ++i)
printf("%d \t\t %d\n", i, dist[i]);
}
// Driver program to test methods of graph class
int main()
{
// create the graph given in above fugure
int V = 9;
Graph g(V);
// making above shown graph
g.addEdge(0, 1, 4);
g.addEdge(0, 7, 8);
g.addEdge(1, 2, 8);
g.addEdge(1, 7, 11);
g.addEdge(2, 3, 7);
g.addEdge(2, 8, 2);
g.addEdge(2, 5, 4);
g.addEdge(3, 4, 9);
g.addEdge(3, 5, 14);
g.addEdge(4, 5, 10);
g.addEdge(5, 6, 2);
g.addEdge(6, 7, 1);
g.addEdge(6, 8, 6);
g.addEdge(7, 8, 7);
g.shortestPath(0);
return 0;
}